98%
921
2 minutes
20
Smart irrigation systems play a crucial role in water management, particularly in urban greening applications aimed at mitigating urban heat islands and enhancing environmental sustainability. These systems rely on soil moisture sensors to optimize water usage, ensuring that irrigation is precisely tailored to plant needs. This study evaluates the performance of four commercially available capacitive soil moisture sensors-TEROS 10, SMT50, Scanntronik, and DFROBOT-across three different substrates under controlled laboratory conditions. A total of 380 measurements were conducted to assess sensor accuracy, reliability, and the influence of insertion technique on measurement variability. Results indicate that while all sensors adequately cover the moisture ranges critical for plant health, their accuracy varies significantly, highlighting the necessity of substrate-specific calibration. TEROS 10 exhibited the lowest relative deviation and highest measurement consistency, making it the most reliable among the tested sensors. DFROBOT, despite being the least expensive, performed comparably to SMT50 and Scanntronik in certain conditions. The findings provide valuable insights for selecting and calibrating soil moisture sensors in smart irrigation applications, ultimately contributing to improved water efficiency, plant vitality, and sustainable building-integrated greenery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902863 | PMC |
http://dx.doi.org/10.3390/s25051461 | DOI Listing |
J Adv Res
September 2025
State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address: tangtao@za
Introduction: Microencapsulated pyraclostrobin (PYR-CS) has gained widespread adoption in agriculture owing to its extended efficacy and reduced risks for non-target organisms. However, knowledge remains limited regarding its degradation in soil and effects on soil microorganisms.
Objectives: This study investigates the hypothesis that microencapsulation alters pyraclostrobin degradation and reshapes soil microbial communities compared with conventional formulations, including emulsifiable concentrate (PYR-EC) and technical material (PYR-TC).
Environ Technol
September 2025
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China.
The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.
View Article and Find Full Text PDFBackground And Aims: Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs of China, Beijing, China.
Simultaneously enhancing the crop yield and reducing nitrous oxide (NO) emissions presents a critical challenge in sustainable agriculture. The application of nitrogen (N) fertilizer is a key strategy to enhance crop yield. However, conventional N application practices often lead to excessive soil N accumulation, insufficient crop N uptake and elevated greenhouse gas (GHG) emissions.
View Article and Find Full Text PDF