98%
921
2 minutes
20
By monitoring the solidification of droplets of plant latices with a fast quartz crystal microbalance with dissipation monitoring (QCM-D), droplets from were found to solidify much faster than droplets from and also faster than droplets from all technical latices tested. A similar conclusion was drawn from optical videos, where the plants were injured and the milky fluid was stretched (sometimes forming fibers) after the cut. Rapid solidification cannot be explained with physical drying because physical drying is transport-limited and therefore is inherently slow. It can, however, be explained with coagulation being triggered by a sudden decrease in hydrostatic pressure. A mechanism based on a pressure drop is corroborated by optical videos of both plants being injured under water. While the liquid exuded by keeps streaming away, the liquid exuded by quickly forms a plug even under water. Presumably, the pressure drop causes an influx of serum into the laticifers. The serum, in turn, triggers a transition from a liquid-liquid phase separated state (an LLPS state) of a resin and hardener to a single-phase state. QCM measurements, optical videos, and cryo-SEM images suggest that LLPS plays a role in the solidification of .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902487 | PMC |
http://dx.doi.org/10.3390/plants14050798 | DOI Listing |
Invest Ophthalmol Vis Sci
September 2025
Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia.
Purpose: To characterize corneal immune cell morphodynamics and nerve features, and define the in vivo immune landscape in older adults with human immunodeficiency virus (HIV) receiving antiretroviral therapy (ART), relative to healthy age-matched adults.
Methods: In this cross-sectional study, 16 HIV-positive individuals receiving ART and 15 age-matched controls underwent ocular surface examinations and functional in vivo confocal microscopy (Fun-IVCM). Time-lapsed videos were created to analyze corneal immune cells (T cells, dendritic cells [DCs], macrophages).
IEEE Trans Pattern Anal Mach Intell
September 2025
Human beings have the ability to continuously analyze a video and immediately extract the motion components. We want to adopt this paradigm to provide a coherent and stable motion segmentation over the video sequence. In this perspective, we propose a novel long-term spatio-temporal model operating in a totally unsupervised way.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh;
Recent advances have enabled the Protein synthesis Using Recombinant Elements (PURE) cell-free system to be produced in individual laboratories economically and with reduced labor burden. However, the preparation of the 36 protein components and ribosome, which make up PURE, is still a complex undertaking, with much scope for variation and error. We present a detailed and updated procedure to manufacture PURE based on the recently published OnePot protocol, which involves regulating a number of key steps, in particular, the inoculation of cultures using optical density (OD)-normalized glycerol stocks, careful monitoring of cell growth, and controlling final glycerol concentrations.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Marianne Bernadotte Centrum, Department for Clinical Neuroscience, Karolinska Institutet; St Erik Eye Hospital.
The present protocol evaluates the relative impact of visual and vestibular inputs during roll plane rotations using optokinetic, vestibular, and combined visuovestibular stimulations. Subjects underwent isolated visual rotations, whole-body vestibular rotations in darkness, and visuovestibular stimulations combining static visual scenes with head rotations. Dynamic and static eye movement gains, absolute amplitudes, velocities, and accelerations were measured alongside perceptual responses.
View Article and Find Full Text PDFComput Struct Biotechnol J
August 2025
Institute of Biomedical Engineering, TU Dresden, Fetscherstr. 29, Dresden 01307, Germany.
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are an important resource for identifying novel therapeutic targets and cardioprotective drugs. However, a key limitation of iPSC-CMs is their immature, fetal-like phenotype. Cultivation of iPSC-CMs in lipid-supplemented maturation media (MM) enhances the structural, metabolic and electrophysiological properties of iPSC-CMs.
View Article and Find Full Text PDF