A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

MRI super-resolution reconstruction using efficient diffusion probabilistic model with residual shifting. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Magnetic resonance imaging (MRI) is essential in clinical and research contexts, providing exceptional soft-tissue contrast. However, prolonged acquisition times often lead to patient discomfort and motion artifacts. Diffusion-based deep learning super-resolution (SR) techniques reconstruct high-resolution (HR) images from low-resolution (LR) pairs, but they involve extensive sampling steps, limiting real-time application. To overcome these issues, this study introduces a residual error-shifting mechanism markedly reducing sampling steps while maintaining vital anatomical details, thereby accelerating MRI reconstruction.

Approach: We developed Res-SRDiff, a novel diffusion-based SR framework incorporating residual error shifting into the forward diffusion process. This integration aligns the degraded HR and LR distributions, enabling efficient HR image reconstruction. We evaluated Res-SRDiff using ultra-high-field brain T1 MP2RAGE maps and T2-weighted prostate images, benchmarking it against Bicubic, Pix2pix, CycleGAN, SPSR, ISR, and TM-DDPM methods. Quantitative assessments employed peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), gradient magnitude similarity deviation (GMSD), and learned perceptual image patch similarity (LPIPS). Additionally, we qualitatively and quantitatively assessed the proposed framework's individual components through an ablation study and conducted a Likert-based image quality evaluation.

Main Results: Res-SRDiff significantly surpassed most comparison methods regarding PSNR, SSIM, and GMSD for both datasets, with statistically significant improvements (-values ). The model achieved high-fidelity image reconstruction using only four sampling steps, drastically reducing computation time to under one second per slice. In contrast, traditional methods like TM-DDPM and ISR required approximately 20 and 38 seconds per slice, respectively. Qualitative analysis showed Res-SRDiff effectively preserved fine anatomical details and lesion morphologies. The Likert study indicated that our method received the highest scores, 4.14 ± 0.77(brain) and 4.80 ± 0.40(prostate).

Significance: Res-SRDiff demonstrates efficiency and accuracy, markedly improving computational speed and image quality. Incorporating residual error shifting into diffusion-based SR facilitates rapid, robust HR image reconstruction, enhancing clinical MRI workflow and advancing medical imaging research. Code available at https://github.com/mosaf/Res-SRDiff.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908366PMC

Publication Analysis

Top Keywords

sampling steps
12
image reconstruction
12
anatomical details
8
incorporating residual
8
residual error
8
error shifting
8
image quality
8
image
6
res-srdiff
5
mri
4

Similar Publications