Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

CD19-directed chimeric antigen receptor (CAR)-T cells are breakthrough therapies for aggressive B-cell lymphomas, but less than half of patients achieve durable responses. We previously showed through whole-genome sequencing of tumors from CAR-T-treated patients that deletions of (3p21.31) are enriched in cases progressing after treatment. 's roles in resistance and pathogenesis are poorly defined, despite loss-of-function alterations that occur in ~20% of newly diagnosed diffuse large B-cell lymphoma (DLBCL) cases. To evaluate mechanisms of CAR-T resistance, we created RHOA-deficient DLBCL systems and confirmed cell-intrinsic loss of response to CAR-19 in vitro and in vivo. RHOA loss promotes AKT activation that impairs cell-intrinsic responses to interferon gamma (IFNγ). Moreover, expression of the CAR target CD19 is consistently down-regulated accompanied by a drive toward plasmablast differentiation. RHOA deficient tumors demonstrate greatly increased sensitivity to AKT-pathway inhibitors, which reverse impaired IFNγ responses. Lymphoma microenvironments in vivo in immunocompetent mice reveal that RHOA loss promotes decreased infiltration by cytotoxic T cells and enrichment of M2-polarized macrophages, known markers of CAR-T resistance in lymphoma clinical cases. Overall, we characterize RHOA deficiency as an AKT-mediated CAR-T resistance driver and implicate avoidance of T-cell mediated killing as a likely reason for RHOA's frequent loss in DLBCL pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908125PMC
http://dx.doi.org/10.1101/2025.02.27.640687DOI Listing

Publication Analysis

Top Keywords

car-t resistance
16
rhoa loss
12
diffuse large
8
large b-cell
8
b-cell lymphoma
8
loss promotes
8
rhoa
5
car-t
5
resistance
5
loss function
4

Similar Publications

Chimeric antigen receptor (CAR) therapies have demonstrated remarkable clinical efficacy in hematological malignancies, validating their therapeutic potential. However, challenges such as therapeutic resistance and limited accessibility hinder their broader application. To overcome these limitations, alternative CAR-based cell therapies, including CAR-Natural Killer (CAR-NK), CAR-macrophage (CAR-M), and CAR-dendritic cell (CAR-DC) therapies, have been proposed.

View Article and Find Full Text PDF

Unraveling epigenetic drivers of immune evasion in gliomas: mechanisms and therapeutic implications.

Front Immunol

September 2025

Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.

Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.

View Article and Find Full Text PDF

pH-responsive activation of Tet-On inducible CAR-T cells enables spatially selective treatment of targeted solid tumors at reduced safety risk.

Natl Sci Rev

September 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.

Chimeric antigen receptor T (CAR-T)-cell therapy is a promising resolution for solid tumors, but its corresponding clinical translation has been hindered by unsatisfactory therapeutic potency and severe cytokine release syndrome. Herein, tetracycline (Tet)-On inducible human epidermal growth factor receptor 1 (HER1)-targeted CAR-T (Tet-HER1-CAR-T) cells were engineered to enable spatially selective activation at tumor sites by doxycycline (Doxy), which is delivered by pH-responsive stealth liposomal calcium carbonate nanoparticles (Doxy@CaCO-PEG). Compared with the intravenous administration of conventional HER1-CAR-T cells and Tet-HER1-CAR-T cells activated by free Doxy, concurrent intravenous administration of Tet-HER1-CAR-T cells and Doxy@CaCO-PEG leads to the localized tumor activation of Tet-HER1-CAR-T cells and reduced systemic secretion of inflammatory cytokines.

View Article and Find Full Text PDF

Background: Chimeric antigen receptor T-cell (CAR-T) therapy has transformed the treatment landscape for relapsed or refractory non-Hodgkin lymphoma, achieving a 5-year overall survival rate of 40-50%. However, relapse remains a major challenge, especially due to CD19-negative clones. Epcoritamab, a bispecific antibody targeting CD20 and CD3, offers a potential solution for post-CAR-T relapse; however, clinical data in this setting remain limited, particularly in Japan.

View Article and Find Full Text PDF

Cell adhesion molecule ITGB2 promotes CAR-T cell therapy in B-cell malignancies.

Cancer Lett

September 2025

Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huaian, 223300, Jiangsu Province, China; Key Laboratory of Autoimmune Diseases of Huaian City, Huaian, 223300, Jiangsu Pr

CAR-T cell therapy, as a representative technology in cancer immunotherapy, has demonstrated notable success in the treatment of hematologic malignancies; however, a significant proportion of patients fail to achieve sustained remission. Through the analysis of bone marrow sequencing data prior to CD19 CAR-T cell therapy, we identified cellular adhesion as a pivotal factor influencing clinical outcomes. We developed a model to predict B-ALL treatment efficacy based on the core genes associated with cellular adhesion, which was validated in our clinical cohort.

View Article and Find Full Text PDF