Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Repetitive brain stimulation is hypothesized to bidirectionally modulate excitability, with low-frequency trains decreasing and high-frequency (>5 Hz) trains increasing activity. Most insights on the neuroplastic effects of repetitive stimulation protocols stem from non-invasive human studies (TMS/EEG) or data from rodent slice physiology. Here, we developed a rodent experimental preparation enabling simultaneous imaging of cellular activity during stimulation in vivo to understand the mechanisms by which brain stimulation modulates excitability of prefrontal cortex.

Methods: Repetitive trains of intracortical stimulation were applied to the medial prefrontal cortex using current parameters mapped to human rTMS electric-field estimates. Calcium imaging of glutamatergic (CamKII) and GABAergic (mDLX) neurons was performed before, during, and after stimulation in awake rodents (n=9 females). Protocols included low-frequency (1 Hz, 1000 pulses) and high-frequency (10 Hz, 3000 pulses), with sham stimulation as a control.

Results: Glutamatergic neurons were differentially modulated by stimulation frequency, with 10 Hz increasing and 1 Hz decreasing activity. Post-stimulation, 1 Hz suppressed both glutamatergic and GABAergic activity, whereas 10 Hz selectively suppressed GABAergic neurons.

Conclusions: These findings provide direct evidence that clinical brain stimulation protocols induce long-term modulation of cortical excitability, with low-frequency stimulation broadly suppressing activity and high-frequency stimulation preferentially inhibiting GABAergic neurons after stimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908244PMC
http://dx.doi.org/10.1101/2025.03.03.640887DOI Listing

Publication Analysis

Top Keywords

stimulation
13
brain stimulation
12
glutamatergic gabaergic
8
prefrontal cortex
8
excitability low-frequency
8
stimulation protocols
8
gabaergic
5
activity
5
differential glutamatergic
4
gabaergic responses
4

Similar Publications

The low dose dexamethasone stimulation test (LDDST) is routinely used in canine medicine but in the few cases in guinea pigs diagnosed with hypercortisolism, the adrenocorticotropic hormone (ACTH) stimulation test was used. The objective of the authors was to conduct a pilot study and find out if the standard test used in dogs can be used in this species.A 4-year-old intact female hairless guinea pig showed bilaterally enlarged adrenal glands and high cortisol levels.

View Article and Find Full Text PDF

This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.

View Article and Find Full Text PDF

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF

Rational Design and Applications of Ultrasmall Gold Nanoparticles.

Top Curr Chem (Cham)

September 2025

Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates.

Controlling the size of gold nanoparticles (AuNPs) has been critical in diagnostics, biomolecular sensing, targeted therapy, wastewater treatment, catalysis, and sensing applications. Ultrasmall AuNPs (uAuNPs), with sizes Ranging from 2 to 5 nm, and gold nanoclusters (AuNCs), with sizes less than 2 nm, are often dealt with interchangeably in the literature, making it challenging to review them separately. Although they are grouped in our discussion, their chemical and physical properties differ significantly, partly due to their electronic properties.

View Article and Find Full Text PDF