A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tyrosine Kinase Inhibitor Lenvatinib Based Nano Formulations and Cutting-Edge Scale-Up Technologies in revolutionizing Cancer Therapy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lenvatinib (LEN), a tyrosine kinase inhibitor, has emerged as a promising therapeutic agent for various solid tumors. Nevertheless, a number of constraints, including diminished bioavailability, incapacity to elicit localized inflammation, and inability to selectively accumulate at the tumor site, may impede the comprehensive exploitation of its versatile tyrosine kinase inhibitory capabilities. In order to achieve targeted delivery of LEN while also reducing its high dose used in conventional therapeutics, nanoformulation approaches can be adopted. The integration of LEN into various nanoformulations, such as nanoparticles, nanocrystals, high density lipoproteins (HDLs), liposomes, and micelles, is discussed, highlighting the advantages of these innovative approaches in a comparative manner; however, given that the current methods of nanoformulation synthesis employ toxic organic solvents and chemicals, there is an imperative need for exploring alternative, environmentally friendly approaches. The multifaceted effects of nanocarriers have rendered them profoundly applicable within the biomedical domain, serving as instrumental entities in various capacities such as vehicles for drug delivery and genetic material, diagnostic agents, facilitators of photothermal therapy, and radiotherapy. However, the scalability of these nanotechnological methodologies must be rigorously investigated and addressed to refine drug delivery mechanisms. This endeavor offers promising prospects for revolutionizing strategies in cancer therapeutics, thereby laying the foundation for future research in scale-up techniques in the pursuit of more effective and less toxic therapies for cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c01527DOI Listing

Publication Analysis

Top Keywords

tyrosine kinase
12
kinase inhibitor
8
drug delivery
8
inhibitor lenvatinib
4
lenvatinib based
4
based nano
4
nano formulations
4
formulations cutting-edge
4
cutting-edge scale-up
4
scale-up technologies
4

Similar Publications