98%
921
2 minutes
20
Cyclodextrin formulations are crucial for enhancing the solubility of drugs. Bile salts are recognized as potential agents for displacing drugs from cyclodextrin formulations in intestinal fluids. However, the mechanism underlying this displacement remains unclear. This study aims to investigate the mechanism of competitive displacement using molecular dynamics simulations and to develop guidelines for effective cyclodextrin formulation design. The umbrella sampling method is employed to investigate the binding free energy between bile salts and cyclodextrin molecules, while metadynamics is utilized to simulate the dynamic replacement process. The results indicate that the optimal binding free energy interval between cyclodextrins and drugs ranges from -30 kJ/mol to -8 kJ/mol. Additionally, the optimal concentration ratio between drugs and cyclodextrins can be calculated based on the binding free energy. Displacement simulations showed that free single bile salt molecules are more likely to complete the displacement compared to clusters of bile salts. This suggests that the bioavailability of cyclodextrins may be higher in fasting conditions than in the fed state. This study will not only enhance our understanding of the relationships between cyclodextrin formulations and bile salts but also facilitate the rational design of more effective pharmaceutical formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2025.103760 | DOI Listing |
Med Sci (Paris)
September 2025
Service des maladies de l'appareil digestif. Centre de compétence Maladies rares « Maladies inflammatoires des voies biliaires et hépatites autoimmunes », Hôpital Huriez, Lille, France.
Primary biliary cholangitis (PBC) is a rare disease for which management long consisted of a single treatment: ursodeoxycholic acid. In 2015-2016, this disease regained interest with the first studies on obeticholic acid (FXR agonist) and then on bezafibrate (PPAR agonist). Subsequently, over the past five years, significant progress has been made in the management of PBC.
View Article and Find Full Text PDFFood Sci Biotechnol
October 2025
School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 Zhejiang China.
Unlabelled: Lactose intolerance is defined as the inability to digest lactose due to insufficient activity of the β-galactosidase enzyme, which catalyzes the hydrolysis of lactose into glucose and galactose. This study evaluated the potential probiotic properties of isolated S8, which exhibiting high β-galactosidase activity. The strain demonstrated higher survival rate under gastrointestinal stress, with 80% and 63% viability after 3 h in simulated gastric fluid and 8 h in intestinal fluid, respectively, while retaining 60.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Reference Center for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.
Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.
View Article and Find Full Text PDFAPMIS
September 2025
Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
Pyroptosis is a lytic and pro-inflammatory regulated cell death pathway mediated by pores formed by the oligomerization of gasdermin proteins on cellular membranes. Different pro-inflammatory molecules such as interleukin-18 are released from these pores, promoting inflammation. Pyroptotic cell death has been implicated in many pathological conditions, including cancer and liver diseases.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America.
The farnesoid X receptor (FXR), expressed in the liver and in the small intestine, is a key regulator of glucose and lipid metabolism. Its pharmacological modulation is explored as a potential treatment for obesity-related metabolic impairments. To develop effective pharmacological interventions, it is crucial to differentiate the individual contributions of intestinal and hepatic FXR to lipid metabolism.
View Article and Find Full Text PDF