A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Neuron Perception Inspired EEG Emotion Recognition With Parallel Contrastive Learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Considerable interindividual variability exists in electroencephalogram (EEG) signals, resulting in challenges for subject-independent emotion recognition tasks. Current research in cross-subject EEG emotion recognition has been insufficient in uncovering the shared neural underpinnings of affective processing in the human brain. To address this issue, we propose the parallel contrastive multisource domain adaptation (PCMDA) model, inspired by the neural representation mechanism in the ventral visual cortex. Our model employs a neuron-perception-inspired contrastive learning architecture for EEG-based emotion recognition in subject-independent scenarios. A two-stage alignment methodology is employed for the purpose of aligning numerous source domains with the target domain. This approach integrates a parallel contrastive loss (PCL) which simulates the self-supervised learning mechanism inherent in the neural representation of the human brain. Furthermore, a self-attention mechanism is integrated to extract emotion weights for each frequency band. Extensive experiments were conducted on three publicly available EEG emotion datasets, SJTU emotion EEG dataset (SEED), database for emotion analysis using physiological signals (DEAP), and finer-grained affective computing EEG dataset (FACED), to evaluate our proposed method. The results demonstrate that the PCMDA effectively utilizes the unique EEG features and frequency band information of each subject, leading to improved generalization across different subjects in comparison to other methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2025.3546283DOI Listing

Publication Analysis

Top Keywords

emotion recognition
16
eeg emotion
12
parallel contrastive
12
emotion
8
contrastive learning
8
human brain
8
neural representation
8
frequency band
8
eeg dataset
8
eeg
7

Similar Publications