98%
921
2 minutes
20
Mitochondrial dysfunction is increasingly recognized as a shared feature of Alzheimer's disease (AD) and inflammatory bowel disease (IBD), linked through overlapping pathways of hypoxia and immune dysregulation. Our study integrated transcriptomic and genetic analyses to uncover mitochondria-related mechanisms underlying these diseases. By analyzing multiple AD and IBD datasets through differential expression gene (DEG) analyses, biological pathway enrichment, and co-expression module construction, we identified hypoxia-induced mitochondrial dysfunction as a central risk factor for both conditions. Key findings revealed several mitochondrial-related genes shared between AD and IBD, including BCL6, PFKFB3, NDUFS3, and COX5B, which serve as critical regulators bridging mitochondrial and immune pathways. Drug enrichment analyses using Drug Signatures Database (DsigDB) and the Connectivity Map (cMAP) identified promising therapeutic candidates, including decitabine, DMOG, and estradiol, targeting shared regulators such as BCL6, PFKFB3, MAFF, and TGFBI. These drugs demonstrated potential to modulate mitochondrial autophagy and oxidative phosphorylation (OXPHOS), pathways enriched in the constructed interaction network with BCL6 and PFKFB3 as central nodes. Mendelian randomization (MR) analysis further identified MAP1LC3A as significantly associated with increased risk for both AD and IBD, while NME1 emerged as strongly protective, suggesting their roles as therapeutic targets. Our findings underscore hypoxia-induced mitochondrial dysfunction as a unifying mechanism in AD and IBD, mediated by hypoxia-inducible factor-1α (HIF-1α). By identifying key mitochondria-associated genes and pathways, this study highlights innovative therapeutic targets and contributes to a deeper understanding of the gut-brain interplay in neurodegeneration and chronic inflammation. These insights pave the way for precision medicine strategies targeting mitochondrial dysfunction in AD and IBD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-025-04826-4 | DOI Listing |
Crit Rev Immunol
January 2025
Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal,500078, Telangana State, India.
Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Chemistry, Govt. Raza P.G. College, Rampur, India.
Parasitic diseases continue to be a major public health burden, particularly in low- and middle-income countries. With the emergence of drug-resistant strains and limitations of current therapies, there is a growing interest in natural products as alternative treatment options. Coumarins, a diverse class of plant-derived secondary metabolites, have shown significant potential as antiparasitic agents.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2025
Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany.
The A20 binding inhibitor of nuclear factor-kappa B (NF-κB)-1 (ABIN-1) serves as a ubiquitin sensor and autophagy receptor, crucial for modulating inflammation and cell death. Our previous in vitro investigation identified the LC3-interacting region (LIR) motifs 1 and 2 of ABIN-1 as key mitophagy regulators. This study aimed to explore the in vivo biological significance of ABIN1-LIR domains using a novel CRISPR-engineered ABIN1-ΔLIR1/2 mouse model, which lacks both LIR motifs.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2025
Humboldt-University zu Berlin, Berlin, Germany.
Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.
View Article and Find Full Text PDFJ Med Chem
September 2025
Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy.
Innovative, sustainable therapies are urgently needed for neglected vector-borne parasitic diseases. In this study, we leveraged cashew nutshell liquid (CNSL), an agro-industrial byproduct, to develop biobased phosphonium and ammonium salts (-) targeting parasite mitochondria. By combining CNSL-derived C8 alkyl chains with lipophilic cations, we synthesized novel compounds exhibiting highly potent and activity against and spp.
View Article and Find Full Text PDF