Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cell migration requires the generation of branched actin networks and recruitment of vesicular membrane that power the protrusion of the plasma membrane in lamellipodia. However, the molecular mechanisms underlying dynamic recruitment of vesicular membrane during cell migration remain elusive. Here, we report a critical mechanism underlying EGF-elicited Akt signaling-steered cell migration. Using functional proteomics screen, we identified a novel ARF6-ACAP4 signaling regulator, Acapin, which inhibits the GAP activity of ACAP4 to activate ARF6 GTPase in vitro. In cells, EGF stimulation elicits Akt signaling, which recruits Acapin to the lamellipodium membrane via phosphorylation of Acapin at its Ser247 residue and enhances the binding of Acapin to ACAP4 to elevate the ARF6-GTP level. Therefore, Acapin is required for efficiently stimulating cell migration by EGF-Akt signaling. Together, our results demonstrate the role of Acapin in relaying the Akt signaling cascade during cell migration processes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmcb/mjaf010DOI Listing

Publication Analysis

Top Keywords

cell migration
24
phosphorylation acapin
8
recruitment vesicular
8
vesicular membrane
8
akt signaling
8
acapin
7
cell
6
migration
6
akt-elicited phosphorylation
4
acapin steers
4

Similar Publications

At present, flexible sensors are a hot spot in research and experimental development, but the research on flexible sensors that can be used for human motion monitoring still needs to be deepened. In this work, the green material cellulose acetate (CA) was used as the matrix material, the film was made by electrospinning, crushed by a cell grinder and sodium alginate (SA) was added to promote the uniform dispersion of nanofibers in water, and then methyltrimethoxysilane (MTMS) and MXene nanosheet dispersion were added to make it hydrophobic and good conductivity, and the aerogel precursor solution was prepared, and then the CA/SA/MTMS/MXene aerogel with directional holes was prepared by directional freeze-drying. As a flexible sensor material, it can be used for human wear, monitoring the electrical signals generated by the movement of human joints and other parts, and can still maintain a current of about 0.

View Article and Find Full Text PDF

Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.

View Article and Find Full Text PDF

Directional Biomimetic Scaffold-Mediated Cell Migration and Pathological Microenvironment Regulation Accelerate Diabetic Bone Defect Repair.

ACS Nano

September 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev

Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.

View Article and Find Full Text PDF

Unlabelled: Dendritic cells (DCs) are the primary inducers of immunity induced by infection or vaccination. To stimulate durable T cell-mediated immunity, multiple DC activities are required. DCs must present antigen, express costimulatory molecules, and secrete inflammatory cytokines to direct T cell activation.

View Article and Find Full Text PDF

Background: The factors contributing to a poor response to subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) are not yet fully understood. Accordingly, predicting the outcome might be challenging particularly in those who display an optimal response to the Levodopa challenge test.

Objective: To determine which factors may contribute to poor outcome of STN-DBS in PD.

View Article and Find Full Text PDF