Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Low-dose chest CT (LDCT) is commonly employed for the early screening of lung cancer. However, it has rarely been utilized in the assessment of volumetric bone mineral density (vBMD) and the diagnosis of osteoporosis (OP).
Purpose: This study investigated the feasibility of using deep learning to establish a system for vBMD prediction and OP classification based on LDCT scans.
Methods: This study included 551 subjects who underwent both LDCT and QCT examinations. First, the U-net was developed to automatically segment lumbar vertebrae from single 2D LDCT slices near the mid-vertebral level. Then, a prediction model was proposed to estimate vBMD, which was subsequently employed for detecting OP and osteopenia (OA). Specifically, two input modalities were constructed for the prediction model. The performance metrics of the models were calculated and evaluated.
Results: The segmentation model exhibited a strong correlation with manual segmentation, achieving a mean Dice similarity coefficient (DSC) of 0.974, sensitivity of 0.964, positive predictive value (PPV) of 0.985, and Hausdorff distance of 3.261 in the test set. Linear regression and Bland-Altman analysis demonstrated strong agreement between the predicted vBMD from two-channel inputs and QCT-derived vBMD, with a root mean square error of 8.958 mg/mm and an R of 0.944. The areas under the curve for detecting OP and OA were 0.800 and 0.878, respectively, with an overall accuracy of 94.2%. The average processing time for this system was 1.5 s.
Conclusion: This prediction system could automatically estimate vBMD and detect OP and OA on LDCT scans, providing great potential for the osteoporosis screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2025.02.041 | DOI Listing |