A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A smartphone-based portable electrochemical sensor enabled ultrasensitive detection of paclitaxel in serum and injection samples. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A point-of-care testing platform, consisting of smartphone, miniature electrochemical workstation, and screen-printed carbon electrode (SPCE) modified by gold nanoparticle (AuNPs) and multi-walled carbon nanotubes (MWCNTs), is fabricated for the ultrasensitive detection of paclitaxel (PTX) in human serum and injection solution. To enhance conductivity of the sensing system, MWCNTs concentration and AuNPs electrodeposition time were optimized. The AuNPs/MWCNTs effectively increase the working electrode area of SPCE by a factor of 1.46, contributing to improved electrochemical performance. The steps of electrode surface modification and the characterization of AuNPs/MWCNTs/SPCE were investigated by differential pulse voltammetry, impedance spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The sensor shows good linearity between current response and PTX concentration in 0.2 M phosphate buffer at pH = 7.4 (0.05-10 μM, with a limit of detection (LOD) of 1.7 nM) and human serum (0.5-30 μM and a LOD of 3.6 nM). The recoveries range from 89.91 to 103.36% and 91.42 to 103.73% in human serum and injection solution, respectively, with satisfactory relative standard deviation. Moreover, the sensor has excellent stability during 8 weeks and exhibits outstanding specificity and reproducibility towards PTX detection, providing a possible option for PTX determination in practical application such as therapeutic drug monitoring and drug quality control.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-025-07085-1DOI Listing

Publication Analysis

Top Keywords

serum injection
12
human serum
12
ultrasensitive detection
8
detection paclitaxel
8
injection solution
8
smartphone-based portable
4
portable electrochemical
4
electrochemical sensor
4
sensor enabled
4
enabled ultrasensitive
4

Similar Publications