98%
921
2 minutes
20
In this study, the cytotoxic effects of pexidartinib (PLX), a tyrosine kinase inhibitor approved for tenosynovial giant cell tumor through inhibition of colony-stimulating factor 1 receptor (CSF1R), against A549 lung adenocarcinoma cells and Beas-2B healthy bronchial cells were investigated by in detailed in-vitro and in-silico studies. Through MTT assays, PLX demonstrated significant inhibition of A549 cell viability with IC values of 2.15 and 1.3 µM at 24 and 48 h, respectively, while having minimal effects on Beas-2B cells, with IC values of 36.2 and 9.3 µM. The high selectivity index indicates PLX's preferential action against cancerous cells. The mechanism of cell death induced by PLX was further explored using Annexin V/PI staining and flow cytometry, revealing that PLX primarily induces necrosis in A549 cells, with an increase in necrotic cell populations and reduced efficacy at higher concentrations. Western blot analysis showed an upregulation of necroptosis markers (RIP3 and pMLKL) in A549 cells, while apoptotic markers like Caspase-3 remained unchanged. In addition, wound healing assays demonstrated that PLX significantly inhibits A549 cell migration in a dose-dependent manner. Molecular docking studies identified key amino acids involved in PLX binding interactions with target proteins. RIPK1 showed the strongest binding affinity. MD simulations revealed that the PLX-VEGFR2 complex was the most stable. As conclusion, PLX, although approved for tenosynovial giant cell tumors, shows promising potential for lung adenocarcinoma treatment. It selectively inhibits cancer cell viability, induces necroptosis, and reduces cell migration. Its stronger binding to RIPK1 and VEGFR2 more than CSF1R.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbf.70068 | DOI Listing |
Crit Rev Immunol
January 2025
Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal,500078, Telangana State, India.
Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.
View Article and Find Full Text PDFCrit Rev Immunol
January 2025
Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.
Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.
View Article and Find Full Text PDFCrit Rev Immunol
January 2025
Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal,500078, Telangana State, India.
IL-2 agonists significantly modulate T cell regulation, impacting activation, proliferation, differentiation, and immune homeostasis. Interleukin-2 (IL-2) is crucial for T cell growth and function, binding to the IL-2 receptor to trigger signaling pathways that balance immune responses. IL-2 promotes the expansion of effector T cells and enhances regulatory T cells (Tregs), preventing autoimmune responses.
View Article and Find Full Text PDFCrit Rev Immunol
January 2025
Department of General Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China.
Objective: This study aimed to probe the role of Shenling Baizhu powder (SLBZP) in inhibiting breast cancer (BC) lung metastasis, focusing on epithelial-to-mesenchymal transition (EMT) and ferroptosis.
Methods: BC 4T1 cells were treated with low (3.13 µg/mL) and high (12.
Crit Rev Immunol
January 2025
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.
View Article and Find Full Text PDF