Process Parameters Analysis in Diamond Wire Saw Cutting NdFeB Magnet.

Materials (Basel)

Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neodymium iron boron (NdFeB) magnetic materials are widely used in fields such as electronics, medical devices, power machinery, and hardware machinery. This paper conducted a three-factor and five-level orthogonal experiment on diamond wire saw cutting NdFeB to determine the influence degree of key factors such as workpiece feed rate, diamond wire speed, and workpiece processed size on the surface roughness a and waviness a of NdFeB slices. Further analysis was conducted on the influence of various parameters on the PV value (peak valley difference) of the waviness profile curve of the sawed surface. Finally, slicing processing was carried out under optimized process parameter combinations. The research results indicate that the primary and secondary order of process parameters affecting surface roughness a and waviness a is workpiece feed rate, wire speed, and sawed workpiece size, and the influence on the waviness PV value also shows a consistent trend. The optimal combination of processing parameters is workpiece feed rate of 0.1 mm·min, wire speed of 1600 m·min, and workpiece size of 10 mm. The obtained surface roughness a is 0.433 μm and the waviness a is 0.037 μm, respectively. The regression mathematical model for the waviness PV value is PV = 0.747 × × × . The research results of this paper provide an experimental basis and guidance for optimizing process parameters of sawing NdFeB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901502PMC
http://dx.doi.org/10.3390/ma18051173DOI Listing

Publication Analysis

Top Keywords

process parameters
12
diamond wire
12
workpiece feed
12
feed rate
12
wire speed
12
surface roughness
12
wire cutting
8
cutting ndfeb
8
size surface
8
roughness waviness
8

Similar Publications

Green synthesis of silver nanoparticles using Ocimum sanctum for efficient Congo red dye removal: a response surface methodology approach.

Environ Monit Assess

September 2025

Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India.

Synthetic dyes, such as Congo red (CR), pose serious threats to human health and aquatic ecosystems because of their carcinogenicity and resistance to degradation, necessitating the development of efficient and eco-friendly remediation strategies. In this study, silver nanoparticles (AgNPs) were synthesized via a green method using Ocimum sanctum (holy basil) leaf extract and applied for CR dye removal from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) based on Box-Behnken design (BBD), evaluating the influence of key parameters including pH, AgNP dosage, initial dye concentration, contact time, and temperature.

View Article and Find Full Text PDF

Whole blood (WB) transcriptomics offers a minimal-invasive method to assess patients' immune system. This study aimed to identify transcriptional patterns in WB associated with clinical outcomes in patients treated with immune checkpoint inhibitors (ICIs). We performed RNA-sequencing on pre-treatment WB samples from 145 patients with advanced cancer.

View Article and Find Full Text PDF

The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.

View Article and Find Full Text PDF

Nuclear biomolecular condensates are essential sub-compartments within the cell nucleus and play key roles in transcription and RNA processing. Bottom-up construction of nuclear architectures in synthetic settings is non-trivial but vital for understanding the mechanisms of condensates in real cellular systems. Here, we present a facile and versatile synthetic DNA protonucleus (PN) platform that facilitates localized transcription of branched RNA motifs with kissing loops (KLs) for subsequent condensation into complex condensate architectures.

View Article and Find Full Text PDF

Wearable device-measured circadian rest-activity rhythm with mortality risk in patients with cancer.

BMJ Health Care Inform

September 2025

Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China

Objectives: The objectives were to examine the associations between accelerometer-measured circadian rest-activity rhythm (CRAR), the most prominent circadian rhythm in humans and the risk of mortality from all-cause, cancer and cardiovascular disease (CVD) in patients with cancer.

Methods: 7456 cancer participants from the UK Biobank were included. All participants wore accelerometers from 2013 to 2015 and were followed up until 24 January 2024, with a median follow-up of 9.

View Article and Find Full Text PDF