98%
921
2 minutes
20
Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated. A simulated medium with fungal spores was used to assess anti-toxigenic activity, and a simulated infection experiment was conducted with orange and lemon fruits. The capacity and mechanisms of aromatic constituents were analysed through molecular docking assays targeting enzymes involved in fungal growth and mycotoxin production. The nanoparticles exhibited good stability (89.17%-92.41%) and compact formulation (density of 0.92-0.96 g/mL). Results demonstrated substantial effectiveness of nano-emulsions against toxigenic fungi, with major aromatic compounds identified as terpinene-4-ol (18%) and -terpinene (11%) in marjoram and estragole (38%) and anethole (29%) in fennel oil. Diffusion assays revealed significant anti-pathogen effects (8.33-11 mm) and antifungal activity (33.33 ± 2.88-89.33 ± 1.15 mm) of marjoram and fennel nano-emulsions. Results regarding simulated infected fruit reflect spoilage delay without impacting fruit quality or sensory. The interactions between oil or nano-emulsions and fungal enzymes showed strong binding-free energy values, with significant docking scores (-6.6 to -7.0 kcal/mol) for aromatic constituents. In conclusion, aromatic antifungals offer a promising strategy for controlling , enhancing the safety and quality of oranges and lemons, with oil nanoparticles improving antifungal efficacy by significantly reducing mycelium weight and spore germination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/19440049.2025.2473551 | DOI Listing |
Drug Des Devel Ther
April 2025
Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia.
Introduction: Urinary tract infections related to catheters are one of the most common urinary infections and can affect patient outcomes. Hence, coating urinary catheters is an important issue against several resistant bacterial pathogens that can form a resistant biofilm. This study examined the antibacterial and antibiofilm properties of the coated catheter with green silver nanoparticles (AgNPs) made from .
View Article and Find Full Text PDFJ Nematol
February 2025
Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA.
was first described in Florida, USA, in 2004 but has since been reported in California, South Carolina, and Georgia. Our objective was to determine the galling and reproduction differences between two isolates of , Mf3 and MfGNV14, on culinary herbs. A duplicated study was performed where both isolates were inoculated separately to nine culinary herbs (basil, catnip, chicory, dill, fennel, marjoram, parsley, sage, and thyme).
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
May 2025
Food Toxicology and Contaminants Department, National Research Centre, Giza, Egypt.
Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated.
View Article and Find Full Text PDFRocz Panstw Zakl Hig
December 2024
Laboratory of Anthropogenetic, Biotechnologies and Health, Department of Biology, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco.
Background: Despite the extensive literature focusing on identifying novel antimicrobials of plant origin, little work has been undertaken to examine the antimicrobial activity of wild edible plants.
Objective: The current research aimed to determine the in vitro antimicrobial activity of methanolic extract of some common wild edible plants.
Material And Methods: Disc diffusion and broth micro dilution methods were used to evaluate the antimicrobial activity of extracts of , , , , , , and against known human microorganisms' pathogens.
Schweiz Arch Tierheilkd
September 2024
Wiederkäuerklinik, Vetsuisse-Fakultät, Universität Bern.
Essential oils are secondary metabolites of aromatic plants and are used in phytotherapy to treat various diseases. In the present study, eight selected essential oils - ajwain oil (Trachyspermum ammi L.), fennel oil (Foeniculum vulgare Mill.
View Article and Find Full Text PDF