98%
921
2 minutes
20
Background: Fenvalerate (Fen) is a synthetic pyrethroid insecticide significantly associated with an increased risk of type 2 diabetes. Tumor cells exhibit a shift in glucose metabolism, known as the Warburg effect. Accordingly, we aimed to elucidate whether Fen interferes with insulin signaling and affects hepatoma cell metabolism.
Methods: The cells were subjected to Fen to assess glucose uptake, acidification, oxygen consumption, and ATP production. ROS generation, mitochondrial membrane potentials, and protein expression were evaluated by flow cytometry, immunofluorescence microscopy, and western blot analyses.
Results: Our results demonstrated that Fen promotes glucose uptake, lactate production, and ATP generation in various cancer cells. Moreover, Fen enhanced insulin receptor phosphorylation and upregulated p-AKT/p-AMPK expression. Fen enhanced insulin receptor sensitivity and endocytosis via reactive oxygen species generation rather than the PP2B pathway. Additionally, the antioxidants N-acetyl-L-cysteine and ascorbic acid reversed the Fen-induced increase in glycolysis. Finally, chronic Fen exposure protected hepatoma cells against metformin-induced cell death via the AKT/AMPK pathway.
Conclusion: These findings raise concerns regarding the safety of Fen and its potential role in altering cancer cell metabolism, affecting insulin signaling and treating drug resistance, thereby necessitating further research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893604 | PMC |
http://dx.doi.org/10.3389/fphar.2025.1540567 | DOI Listing |
Clin Oral Investig
September 2025
Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technology Sciences, SIMATS, Saveetha University, Chennai, Tamil Nadu, India.
Objectives: This study aims to assess periodontal and biochemical parameters and evaluate the salivary Protectin D1 levels in periodontitis patients with and without metabolic syndrome after non-surgical periodontal therapy.
Materials And Methods: Forty patients were categorized into two groups: 20 patients in Group P (systemically healthy patients with stage II/III grade B periodontitis) and 20 patients in Group P+MS (patients with stage II/III grade B periodontitis and metabolic syndrome). Parameters including age, gender, height, weight, body mass index, waist circumference, socio-economic status, oral hygiene index (OHI), modified gingival index (MGI), probing pocket depth, clinical attachment levels, fasting blood glucose, HDL-c, total triglycerides, and blood pressure were recorded.
Trends Endocrinol Metab
September 2025
Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40506, USA; Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY 40506, USA. Electronic address:
Glucose sensing and signaling are central to cellular metabolic machinery for the regulation of metabolic homeostasis. Glucose sensing has been almost always assumed to be coupled with glucose metabolism; however, recent findings have unraveled metabolism-independent sensing mechanisms. Here, we discuss whether glucose transporters (GLUTs) and sodium-glucose co-transporters (SGLTs) may also function as glucose sensors independent of their roles in transporting glucose.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Jiangsu Province Engineering Research Center of Green Pesticides, Yangzhou University, Yangzhou 225009, China. Electronic address:
The brown planthopper (BPH), Nilaparvata lugens is a typical pesticide-induced resurgent rice pest. A previous study showed that a fungicide, jinggangmycin (JGM)-treated rice led to markedly increased sugar content and (Insulin-like Peptide 2) ILP2 in response to sugar-mediated TOR signaling and stimulated fecundity in BPH. However, the role of the other ILPs in response to types of carbohydrate compounds remained poorly understood.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
September 2025
Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Thrissur, Kerala, 680005, India. Electronic address:
7-Ketocholesterol (7-KC) is a biologically active oxysterol formed through the oxidation of cholesterol, predominantly under conditions of oxidative stress. It is generated both enzymatically in specific tissues such as the brain and liver, and non-enzymatically via reactive oxygen species (ROS), especially in aging tissues and heat-processed animal-derived foods. 7-KC exerts multifaceted effects on human health, extending beyond lipid metabolism to disrupt glucose and amino acid utilization, impair mitochondrial function, and provoke endoplasmic reticulum (ER) stress.
View Article and Find Full Text PDFDiabetes Res Clin Pract
September 2025
Health Education Department, and Department of Endocrinology and Diabetes, Diabetes Treatment Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
Background: Despite advances, glycemic control in people with type 2 diabetes (PwT2D) treated with oral antidiabetic medications (ADMs) often remains suboptimal. Continuous glucose monitoring (CGM) has shown promise in diabetes management, offering real-time insights into glucose trends. This study evaluates the impact of transitioning from conventional self-monitoring of blood glucose (SMBG) to CGM on glycemic outcomes and self-management in PwT2D receiving oral ADMs.
View Article and Find Full Text PDF