Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Neutrophils are initial responders in inflammation and contribute to non-alcoholic fatty liver disease (NAFLD) progression to steatohepatitis (NASH). Neutrophil extracellular traps (NETs) are implicated in liver injury, yet their precise mechanisms in NASH progression remains unclear.
Objectives: This study investigates how NETs drive NASH progression by exacerbating hepatocyte lipotoxicity and explore the regulatory mechanism of NETs formation and its downstream effects on liver pathology.
Methods: Clinical samples from NASH patients and diet-induced NASH mice were analyzed for NET levels. NETs were pharmacologically inhibited, and senescent cells were selectively eliminated in mice. Myeloid-specific RBP-J knockout mice were generated to disrupt Notch signaling, with subsequent evaluation of NET formation, senescence markers, steatosis, fibrosis, and inflammation.
Results: NETs were elevated in NASH patients and mice, correlating with hepatocyte senescence and lipotoxicity. Pharmacological NET disruption reduced hepatocyte senescence, accompanied by attenuated steatosis and fibrosis. Senescent cell clearance replicated these improvements, confirming liver senescence emerges is a vital step for NETs to promote the progression of NASH. Myeloid-specific Notch signaling ablation suppressed NET generation, concurrently decreasing lipid deposition and liver inflammation.
Conclusion: Our findings elucidate a novel mechanism by which neutrophil-derived Notch driven NETs exacerbate NASH by promoting cell senescence, thereby contributing to hepatic steatosis and fibrosis. This insight may provide potential intervention strategies and therapeutic targets for NASH treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jare.2025.03.015 | DOI Listing |