Targeting tumor monocyte-intrinsic PD-L1 by rewiring STING signaling and enhancing STING agonist therapy.

Cancer Cell

Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, China. Ele

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

STING is an important DNA sensing machinery in initiating immune response, yet therapies targeting STING have shown poor outcomes in clinical trials. Here, we reveal that STING signaling induces PD-L1 tumor monocytes (Tu.Mons) that dominate the resistance against STING agonist therapy. Cell-intrinsic PD-L1, induced by the STING-IRF3-IFN-I axis, is identified as the driving factor for protumoral PD-L1 Tu.Mons. Notably, TLR2-activated Tu.Mons resist STING-induced upregulation of cell-intrinsic PD-L1 and the associated protumoral functions. Mechanistically, TLR2 stimulation remodels STING signaling by facilitating STING and TRAF6 interaction, which suppresses the IRF3-IFN-I response and enhances NF-κB activation. Moreover, we demonstrate that combining STING agonists with TLR2 agonist pretreatment significantly improves antitumor efficacy in murine syngeneic and humanized models. Our findings uncover a protumoral aspect of STING activation mediated by cell-intrinsic PD-L1 and propose a promising strategy to boost antitumor immunity by fine-tuning STING signaling outputs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccell.2025.02.014DOI Listing

Publication Analysis

Top Keywords

sting signaling
16
cell-intrinsic pd-l1
12
sting
11
sting agonist
8
agonist therapy
8
pd-l1
6
targeting tumor
4
tumor monocyte-intrinsic
4
monocyte-intrinsic pd-l1
4
pd-l1 rewiring
4

Similar Publications

Background: Germinal matrix hemorrhage (GMH) is a common complication of premature infants with lifelong neurological consequences. Inflammation-mediated blood-brain barrier (BBB) disruption has been implicated as a main mechanism of secondary brain injury after GMH. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a crucial role in inflammation, yet its involvement in GMH pathophysiology remains unclear.

View Article and Find Full Text PDF

Tooth loss impairs cognitive function in SAMP8 mice by aggravating pyroptosis of microglia via the cGAS/STING pathway.

Front Aging Neurosci

August 2025

Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.

Introduction: Alzheimer's Disease (AD) is a common neurodegenerative disease among the elderly population. It has been posited that the onset and progression of AD are influenced by a combination of various factors. Occlusal support loss due to tooth loss has been reported to be a risk factor triggering cognitive dysfunction.

View Article and Find Full Text PDF

Background: Cisplatin (DDP) is a clinical first-line chemotherapy drug for hepatocellular carcinoma (HCC), but treatment is often ineffective due to drug resistance. Yes-associated protein 1 (YAP1) is a critical regulator/factor in HCC tumor progression. Our previous research showed that DDP promoted the expression of YAP1 in mice bearing H22 cell in situ liver tumors, which might be related to the poor therapeutic effect of DDP.

View Article and Find Full Text PDF

Jiao-tai-wan and Its Bioactive Constituent Jatrorrhizine Exert Antidepressant Effects via the STING Pathway.

J Ethnopharmacol

September 2025

Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. Electronic address:

Ethnopharmacological Relevance: Jiao-tai-wan (JTW) is a classical traditional Chinese medicine formula that has long been used to treat insomnia. Recent pharmacological studies have highlighted its potential antidepressant effects. However, its role in regulating neuroinflammation associated with depression and the underlying mechanisms remains unclear.

View Article and Find Full Text PDF

Tauroursodeoxycholic acid modulates neuroinflammation via STING/NF-κB inhibition after traumatic brain injury.

Int Immunopharmacol

September 2025

Department of Medical Science Research Center, Brain Injury and Drug Prevention Research Key Laboratory of Shaanxi Universities, Peihua University, Xi'an, Shaanxi 710125, China; Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie 551700, China; School of Life and Health Sc

The incidence of traumatic brain injury (TBI) has demonstrated a marked escalation recently. Nevertheless, there remains a critical paucity of effective drug interventions targeting persistent neuroinflammation-induced damage following TBI. STING/NF-κB axis-induced pyroptosis emerges as a pivotal mechanism driving persistent neuroinflammation, providing it as a potential target for multi-pathway precision therapeutic in TBI.

View Article and Find Full Text PDF