Age-related differences in task-related modulation of cerebellar brain inhibition.

Neurobiol Aging

Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute, Hasselt University, Diepenbeek, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences,

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Age-related reductions in cerebellar integrity predict motor impairments in older adults (OA), but the contribution of cerebro-cerebellar interactions to these impairments remains unclear. Understanding these interactions could reveal underlying mechanisms associated with age-related deficits in motor control. To explore this, twenty younger adults (YA) and twenty OA, all right-handed, participated in a dual-site transcranial magnetic stimulation protocol. Cerebellar brain inhibition (CBI) was measured at rest and during the anticipatory period of a bimanual tracking task (BTT). The results revealed that YA outperformed OA on the BTT. Both age groups demonstrated reduced CBI during the anticipatory period of the BTT compared to CBI at rest, with no differences in CBI levels between both groups. Notably, motor performance was influenced by CBI modulation, as learning progressed (early vs. slightly later short-term learning), and this influence differed between age groups. In summary, resting-state CBI and the task-related release of CBI were maintained in OA, challenging previous assumptions of reduced inhibitory function in OA. However, the modulation of CBI appears to influence short-term motor learning differently for both groups, suggesting potential functional reorganization of the cerebellar neural system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2025.02.009DOI Listing

Publication Analysis

Top Keywords

cerebellar brain
8
brain inhibition
8
cbi
8
anticipatory period
8
age groups
8
age-related differences
4
differences task-related
4
task-related modulation
4
cerebellar
4
modulation cerebellar
4

Similar Publications

Exploring LRP-1 in the liver-brain axis: implications for Alzheimer's disease.

Mol Biol Rep

September 2025

Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.

Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.

View Article and Find Full Text PDF

Patients with Dravet syndrome (DS) present with severe, spontaneous seizures and ataxia. While most patients with DS have variants in the sodium channel Nav1.1 α subunit gene, SCN1A, variants in the sodium channel β1 subunit gene, SCN1B, are also linked to DS.

View Article and Find Full Text PDF

Purpose: Previous studies have revealed alterations of the functional connectivity of the brain networks in ankylosing spondylitis (AS). Fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo) are both voxel-based functional metrics capable of estimating local spontaneous neural activities. This study aimed to investigate the local spontaneous neural activities in AS patients by utilizing the analytical approaches of fALFF and ReHo.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is increasingly recognized as a multifactorial disorder with vascular contributions, including a pro-coagulant state marked by fibrin deposition in the brain. Fibrin accumulation may exacerbate cerebral hypoperfusion and neuroinflammation, leading to neurodegeneration. Identifying patients with this pathology could enable targeted anticoagulant therapy.

View Article and Find Full Text PDF

Introduction: Radiosurgery targeting the thalamus has long been used to treat refractory pain, with medial thalamotomy as a key approach. Traditionally, targeting relied on indirect methods based on anatomical atlases, which do not account for individual variations in brain connectivity. Recent advances in connectomic-guided stereotactic radiosurgery have improved precision in the treatment of movement disorders, but their application to pain management remains underexplored.

View Article and Find Full Text PDF