Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Cerebral ischemia/reperfusion (I/R) injury is the most prevalent form of brain stroke, affecting many patients worldwide. It is believed that oxidative stress and inflammation play major roles in the damage that occurs after the initiation of the disease.
Objectives: Therefore, for the first time, the current study aimed to investigate the neuroprotective effects of bupropion against cerebral I/R damage in a rat model.
Methods: Forty male rats were divided into four groups: Control, cerebral I/R, and two diseased groups that received 60 and 100 mg/kg of bupropion. One day after induction of the disease, behavioral tests, including grid walking, novel object recognition, and modified neurological severity score (mNSS), were performed on the rats. The levels of inflammatory cytokines, including IL-1β, TNF-α, IL-6, and IL-10, were measured in the rats' brain homogenates. Additionally, the levels of MDA, catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and NO were measured.
Results: Bupropion administration was associated with improved performance in the novel object recognition and grid walking behavioral tests, as well as in the neurological disorder scores, in cerebral I/R rats. Moreover, BCAAO-induced inflammation was reduced by the administration of this drug, evidenced by reduced levels of cytokines IL-1β, TNF-α, and IL-6 and upregulation of IL-10. Additionally, membrane lipid peroxidation was reduced in the cerebral I/R rats receiving 100 mg/kg bupropion, and the level of SOD activity was improved in these animals. Finally, the administration of bupropion prevented the increase in NO levels induced by BCAAO.
Conclusions: In conclusion, bupropion has neuroprotective effects against cerebral I/R damage by reducing inflammation and oxidative stress in the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892747 | PMC |
http://dx.doi.org/10.5812/ijpr-156838 | DOI Listing |