Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity. Here, we assemble an extensive dataset of variation in wood density across the most forested and tree-diverse continent, examine how it relates to spatial and environmental variables, and use these relationships to predict spatial variation in wood density over tropical and sub-tropical South America. Our analysis refines previously identified east-west Amazon gradients in wood density, improves them by revealing fine-scale variation, and extends predictions into Andean, dry, and Atlantic forests. The results halve biomass prediction errors compared to a naïve scenario with no knowledge of spatial variation in wood density. Our findings will help improve remote sensing-based estimates of aboveground biomass carbon stocks across tropical South America.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893774PMC
http://dx.doi.org/10.1038/s41467-025-56175-4DOI Listing

Publication Analysis

Top Keywords

wood density
32
variation wood
16
spatial variation
12
density
8
south america
8
wood
7
variation
6
spatial
5
density south
4
south american
4

Similar Publications

Foodborne outbreaks and recalls within the tree fruit industry are making producers re-evaluate appropriate cleaning and sanitation practices during harvesting. Without effective sanitation, bacteria can create niches and form biofilms. This study evaluated the efficacy of silver dihydrogen citrate (SDC) and chlorine dioxide (ClO) gas to control Escherichia coli and Listeria innocua on experimentally inoculated harvesting equipment at commercial apple packinghouses within the Midwest and Pacific Northwest regions.

View Article and Find Full Text PDF

Theory predicts that high population density leads to more strongly connected spatial and social networks, but how local density drives individuals' positions within their networks is unclear. This gap reduces our ability to understand and predict density-dependent processes. Here we show that density drives greater network connectedness at the scale of individuals within wild animal populations.

View Article and Find Full Text PDF

Despite the increasing number of studies investigating tree methane fluxes, the relationships between tree methane fluxes and species traits remain mostly unexplored. We measured leaf and stem methane fluxes of five tree species (Acer saccharinum, Fraxinus nigra, Ulmus americana, Salix nigra, and Populus spp.) in the floodplain of Lake St-Pierre (Québec) and examined how these fluxes vary with species traits (wood density, humidity, pH; leaf water content, pH, stomatal conductance; methanogen and methanotroph relative abundances (RAs) in leaf, wood, and bark).

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) of alkanethiols on gold surfaces are important for various technological applications, such as electroanalytical sensors, organic electronic devices, and catalysts. However, providing a consistent computational description of the unique structural features of these SAMs, such as adsorption patterns, chain conformations, and superlattice arrangements, is challenging, particularly within a versatile computational framework that can simulate both the structural features of these systems and their irradiation-driven chemical transformations. This study systematically analyzes molecular mechanics force field parameters for bonded and nonbonded (van der Waals and electrostatic) interactions in alkanethiol SAMs with different terminal groups.

View Article and Find Full Text PDF

This study aims to evaluate the application potential of unrefined vegetable oils derived from three plant species- (), (), and rapeseed ( L. var. )-as renewable raw materials for the synthesis of bio-based polyurethane foams.

View Article and Find Full Text PDF