Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Amyloidosis such as Alzheimer's or Parkinson's disease is characterized by deposition of amyloid fibrils in the brain or various internal organs. The onset of amyloidosis is related to the strength of cytotoxicity caused by toxic amyloid species. In addition, amyloid fibrils show a polymorphism, , some types of fibrils are more cytotoxic than others. It is thus important to elucidate the molecular mechanism of cytotoxicity, which is ultimately caused by interactions between amyloid fibrils and cell membranes. In this study, modulation of molecular dynamics of phospholipid membranes induced by the binding of amyloid polymorphic fibrils with different levels of cytotoxicity was studied by elastic incoherent neutron scattering in a temperature range between 280 K and 310 K. The amyloid fibrils were formed by a model system of hen egg white lysozyme at pH 2.7 or 6.0 and phospholipid vesicles were formed by DMPG or DMPC. The elastic incoherent neutron scattering curves were analyzed in terms of the mean square positional fluctuations (MSPF) of atomic motions, including its distribution, as a function of temperature, which is related to molecular flexibility. The major findings are: (1) Both more and less cytotoxic fibrils decreased the molecular flexibility of DMPG. (2) While less cytotoxic fibrils decreased the molecular flexibility of DMPC, more cytotoxic fibrils increased it. (3) Close to the physiological body temperature, more cytotoxic fibrils caused larger MSPFs of both phospholipids with an enhanced motional heterogeneity. These results imply that enhanced dynamics of phospholipids is associated with the stronger cytotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp04869eDOI Listing

Publication Analysis

Top Keywords

amyloid fibrils
20
cytotoxic fibrils
16
elastic incoherent
12
incoherent neutron
12
neutron scattering
12
molecular flexibility
12
fibrils
11
dynamics phospholipid
8
phospholipid membranes
8
fibrils decreased
8

Similar Publications

Case Study 10: A 51-Year-Old Man With Psychosis, Decline in Self-Care, and Cognitive Deterioration.

J Neuropsychiatry Clin Neurosci

September 2025

Departments of Psychiatry and Neurology, Center for Brain/Mind Medicine, and Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston.

View Article and Find Full Text PDF

Background: Y69H (p.Y89H) variant hereditary transthyretin (ATTRv) amyloidosis causes meningeal amyloidosis, with mutant TTR deposits localized to the leptomeninges and vitreous body.

Methods: The effect of tafamidis meglumine on neurological disorders, such as the frequency of transient focal neurological episodes (TFNEs), magnetic resonance imaging (MRI) findings, and TTR levels in cerebrospinal fluid, was investigated in two patients diagnosed with Y69H ATTRv mutation.

View Article and Find Full Text PDF

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Clinical Alzheimer's disease is currently characterized by cerebral β-amyloidosis associated with cognitive impairment. However, most cases of Alzheimer's disease are associated with multiple neuropathologies at autopsy. The peripheral protein changes associated with these disease endophenotypes are poorly understood.

View Article and Find Full Text PDF

Aging is a major risk factor for various neurological disorders, including Alzheimer's disease, and is associated with the accumulation of senescent cells, which can themselves propagate the senescence process through paracrine signaling. Migrasomes are organelles that form during cellular migration, detach from parent cells and mediate intercellular communication. Here we demonstrate that border-associated macrophages (BAMs) acquire senescence-associated properties during early brain aging, possibly due to prolonged exposure to amyloid beta.

View Article and Find Full Text PDF