98%
921
2 minutes
20
Background: Runchangningshen paste (RCNSP) is a paste made of four medicinal and edible homologous Chinese medicine mixed with honey. It is known for its ability to nourish yin and blood as well as to loosen the bowel to relieve constipation. The pathophysiology of functional constipation (FC) is associated with a reduction in mucin-2 (MUC2) secretion and microbial dysbiosis.
Aim: To investigate the underlying mechanism of RCNSP against FC through MUC2 and the gut mucosal microbiota.
Methods: Ultra-performance liquid chromatography tandem mass spectrometry characterized RCNSP composition to elucidate the material basis of action. FC model was induced loperamide gavage (16 mg/kg) twice daily for 7 days. Applying defecation function and gastrointestinal motility to assess constipation severity. Hematoxylin and eosin and Alcian blue-periodic acid-schiff staining analyzed colonic mucosal morphology. Transmission electron microscope was used to observe the ultrastructure of goblet cells (GCs). Immunofluorescence colocalization, quantitative PCR, and western blot assessed the impact of RCNSP on gene and protein expression within the NLRP6/autophagy pathway. 16S rDNA was employed to sequence the gut mucosal microbiota.
Results: RCNSP contained 12 components with potential laxative effects. It enhanced defecation function, accelerated gastrointestinal motility, and maintained colonic mucosal integrity. RCNSP treatment significantly increased GC abundance and MUC2 production while preserving GC ultrastructure. At the molecular level, RCNSP enhanced the colocalized expression of key regulatory proteins and modulated mRNA and protein expressions in the NLRP6/autophagy pathway. Through 16S rDNA sequencing analysis, RCNSP significantly altered the mucosal microbiota composition. Specifically, it increased beneficial bacterial strains while reducing harmful ones. Simultaneously, RCNSP reduced butyrate-producing bacteria like , , , and and decreased hydrogen sulfide-producing species, such as . It also reduced bile acid-inhibiting species, such as and while increasing bile acid-producing species, such as .
Conclusion: Our findings suggested that RCNSP ameliorated constipation through a dual mechanism: It stimulated colonic MUC2 secretion by activating NLRP6 inflammasome-mediated autophagy and modulated the composition of the mucosal microbiota.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886036 | PMC |
http://dx.doi.org/10.3748/wjg.v31.i9.102256 | DOI Listing |
J Anim Sci
September 2025
Department of Animal Sciences, Laval University, Québec, QC G1V 0A6, Canada.
In pig production, weaning is a critical period where piglets face several environmental stressors. This transition leads to a significant growth reduction and can result in digestive disorders, including diarrhea. To formulate a feed that meets zinc (Zn) and copper (Cu) requirements during the weaning period while minimizing their release into the environment, it became evident that a more bioavailable micro-mineral supplement is necessary.
View Article and Find Full Text PDFInt J Pharm X
December 2025
Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
Intestinal inflammation particularly inflammatory bowel disease poses significant clinical challenges due to its chronic nature, limited treatment efficacy and adverse effects of conventional therapies like corticosteroids and biologics. Biomimetic nanocarriers have emerged as a transformative strategy to overcome these limitations by leveraging natural cell membranes for targeted drug delivery. This review critically examines the application of biomimetic nanocarriers as precision therapeutics for intestinal inflammation.
View Article and Find Full Text PDFHIV-induced gut microbiota dysbiosis perpetuates mucosal barrier disruption and systemic inflammation despite antiretroviral therapy (ART), creating a tumor-permissive microenvironment. This review synthesizes evidence linking HIV-associated microbial alterations to oncogenesis through three convergent metabolic axes: (1) butyrate deficiency impairing epithelial energy metabolism and anti-tumor immunity; (2) tryptophan metabolism dysregulation compromising gut barrier integrity via depletion and -mediated phenylethylamine overproduction; and (3) vitamin B biosynthesis defects disrupting DNA repair and Th1/Th2 balance. Comparative profiling across HIV-associated malignancies-non-Hodgkin lymphoma, cervical cancer, hepatocellular carcinoma, and lung cancer-reveals conserved dysbiotic signatures: depletion of anti-inflammatory taxa (, ) and expansion of pro-inflammatory genera (, ).
View Article and Find Full Text PDFImmune Netw
August 2025
Department of Biological Science, Ajou University, Suwon 16499, Korea.
The intestinal immune system is adapted to maintain constant interactions with environmental stimuli without causing inflammation. The recognition of Ags derived from microbes and diet can induce Treg or effector T cell responses through dynamic regulatory mechanisms, significantly impacting host health and disease. Although several examples of Ag-specific T cell responses to microbial or dietary Ags have been reported, our understanding of the full range of gut T cell responses remains highly limited.
View Article and Find Full Text PDFFront Oral Health
August 2025
School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Balance of the oral-intestinal axis microbiota is essential for maintaining oral mucosal health. The occurrence of oral disease is closely linked to the microbiota, this disorder is closely related to the pathogenesis of oral mucosal diseases, such as oral lichen planus, recurrent aphthous ulcer, oral candidiasis and squamous-cell carcinoma. As a microorganism that is beneficial to host health, probiotics can show multi-dimensional therapeutic effects in oral mucosal diseases by targeting and regulating the immune microenvironment of the oral mucosa, inhibiting the colonization of pathogenic bacteria and repairing the barrier function.
View Article and Find Full Text PDF