A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Unveiling brain response mechanisms of citrus flavor perception: An EEG-based study on sensory and cognitive responses. | LitMetric

Unveiling brain response mechanisms of citrus flavor perception: An EEG-based study on sensory and cognitive responses.

Food Res Int

College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory of Agro-food Resources and High-value Utilization, Zhejiang International Scientific and Technolo

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Citrus flavors are globally popular in food industry, yet research on the perceptual preferences of various citrus flavors is limited. Based on the subjective sensory evaluation, this study introduces a novel sensory analysis approach, using electroencephalography (EEG), to objectively measure the sensory and cognitive responses to nine citrus flavors, including d-limonene, concentrated (H-) and original essential oils of sweet orange (SEO), bergamot EO (BEO), lemon EO (LEO), and grapefruit EO (GEO). Results revealed that δ (0.5-4 Hz) and α (8-13 Hz) waves activity predominated in brain responses to citrus flavor, with greater activity observed in frontal and central regions compared to other areas. Sniffing citrus EOs triggered more complex and dynamic electrical activity than d-limonene, indicated by higher power density across all frequency bands (0.1-30 Hz). Interestingly, while the original citrus EOs were associated with higher self-reported acceptability, the concentrated forms elicited greater brain responses. Specifically, H-SEO and L-LEO eliciting significantly greater δ and α wave activity in the prefrontal region than their original forms (P < 0.05). A preliminary correlation was observed between brain laterality in α waves power and acceptability scores of citrus flavor, with δ waves power in the prefrontal region further demonstrating an effective reflection of self-reported acceptability scores for SEO and LEO stimuli. This is the first EEG-based study to compare brain responses to different citrus flavors, providing important implications for the food industry in optimizing product formulations and enhancing consumer experiences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2025.116096DOI Listing

Publication Analysis

Top Keywords

responses citrus
12
citrus flavors
12
citrus flavor
8
sensory cognitive
8
cognitive responses
8
brain responses
8
citrus eos
8
citrus
7
unveiling brain
4
brain response
4

Similar Publications