98%
921
2 minutes
20
Juvenile myelomonocytic leukemia (JMML) is caused by constitutively activated RAS signaling and characterized by increased proliferation and predominant myelomonocytic differentiation of hematopoietic cells. Using MxCre;Ptpn11 mice, which model human JMML, we show that RAS pathway activation affects apoptosis signaling through cell type-dependent regulation of BCL-2 family members. Apoptosis resistance observed in monocytes and granulocytes was mediated by overexpression of the anti-apoptotic and down-regulation of the pro-apoptotic members of the BCL-2 family. Two anti-apoptotic proteins, BCL-X and MCL-1, were directly regulated by the oncogenic RAS signaling but, in addition, were influenced by microenvironmental signals. While BCL-X and BCL-2 were required for the survival of monocytes, MCL-1 was essential for neutrophils. Interestingly, stem and progenitor cells expressing the oncogenic PTPN11 mutant showed no increased apoptosis resistance. BCL-X inhibition was the most effective in killing myeloid cells in vitro but was insufficient to completely resolve myeloproliferation in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890777 | PMC |
http://dx.doi.org/10.1038/s41419-025-07479-2 | DOI Listing |
Turk J Pediatr
September 2025
Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
Background: Glucocorticoids remain the primary treatment for acute lymphoblastic leukemia (ALL) in children. However, glucocorticoid-resistant ALL exhibits increased mortality rates. To overcome resistance and improve management strategies, alternative therapeutic agents are required.
View Article and Find Full Text PDFApoptosis
September 2025
School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
A defining hallmark of malignant tumours lies in their pronounced resistance to programmed cell death mechanisms. This intrinsic resilience enables cancer cells to circumvent physiological clearance, thereby sustaining unchecked proliferation and survival. Emerging research has revealed that metabolic dysregulation can precipitate a distinctive form of programmed cell death, termed metabolism-linked regulated cell death (RCD), establishing it as a novel paradigm of cellular self-elimination.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. The tumor microenvironment (TME), particularly the interactions between endothelial cells and cancer-associated fibroblasts (CAFs), plays a pivotal role in promoting tumor growth, angiogenesis, oxidative stress, and therapy resistance. The HUVEC-fibroblast co-culture model closely mimics stromal-endothelial interactions observed in CRC, enabling mechanistic insights not achievable in monocultures.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDFCarcinogenesis
September 2025
Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University/Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China.
Aurora kinase A (AURKA) is a serine/threonine kinase that plays a critical role in cell cycle regulation, particularly during mitosis. Recent studies have identified AURKA as an oncogene overexpressed in various cancers, including gastric cancer (GC). This review summarizes the molecular mechanisms by which AURKA contributes to GC pathogenesis, including its roles in cell proliferation, apoptosis inhibition, epithelial-mesenchymal transition (EMT), and cancer stemness.
View Article and Find Full Text PDF