Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emerging SARS-CoV-2 variants require rapid assessments of pathogenicity and evasion of existing immunity to inform policy. A crucial component of these assessments is accurate estimation of serum neutralising antibody titres using cultured live virus isolates. Here, we report a comparison of culture methods for Omicron sub-variant JN.1 and the subsequent evaluation of neutralising antibody titres (nAbTs) in recipients of BNT162b2-XBB.1.5 monovalent and the ancestral/BA.4/5 containing bivalent vaccines. We compared culture of JN.1 in either Vero V1 cells or Caco-2 cells, finding culture in Vero V1 either resulted in low-titre stocks or induced crucial mutations at the Spike furin cleavage site (FCS). Using sequence-clean culture stocks generated in Caco-2 cells, we assessed serum samples from 71 healthy adults eligible for a COVID-19 vaccination given as a 5th dose booster in the UK: all participants had detectable nAbs against JN.1 prior to vaccination, with baseline/pre-existing nAbTs between both vaccine groups comparable (p = 0.240). However, nAbTs against JN.1 post-vaccination were 2.6-fold higher for recipients of the monovalent XBB.1.5 vaccine than the BA.4/5 bivalent vaccine (p < 0.001). Further, at clinically relevant concentrations the therapeutic monoclonal antibody Sotrovimab marginally maintains neutralisation of JN.1. Regular re-appraisal of methods and policy outcomes as new variants arise is required to ensure robust data are used to underpin future severity assessments and vaccine strain selection decisions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2025.126960DOI Listing

Publication Analysis

Top Keywords

neutralising antibody
8
antibody titres
8
caco-2 cells
8
jn1
5
accurate evaluation
4
evaluation live-virus
4
live-virus microneutralisation
4
microneutralisation sars-cov-2
4
sars-cov-2 variant
4
variant jn1
4

Similar Publications

Newborns represent only 1% of the population. Yet, HIV vertical transmissions represent 10% of all new infections globally, even though antiretroviral therapy (ART) has been shown to reduce the risk of vertical transmission to less than 2%. While vaccines still represent the most efficient and cost-effective intervention to eradicate new infections, HIV immunogens that can effectively elicit broad-spectrum protection are still at least a decade away.

View Article and Find Full Text PDF

Advances in Gene Therapy Clinical Trials for Hemophilia Care.

Curr Gene Ther

September 2025

Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.

Gene therapy has revolutionized the therapeutic landscape for hemophilia A and B, offering the prospect for persistent endogenous production of coagulation factors VIII and IX. Recent advances in adeno-associated virus (AAV)-mediated gene transfer, particularly the approvals of valoctocogene roxaparvovec (Roctavian) and etranacogene dezaparvovec (Hemgenix), mark significant milestones in hemophilia care. This mini-review synthesizes emerging clinical data from phase I-III trials published between 2022 and 2025, emphasizing efficacy, durability, and immunogenicity profiles of leading AAV-based therapies.

View Article and Find Full Text PDF

Background: Dengue virus (DENV) is a major global health challenge, causing over 7.6 million reported cases in 2024. Neutralizing monoclonal antibodies (NmAbs) have emerged as promising therapeutics to address the limitations of vaccines and lack of antivirals, but their development is complicated by viral diversity, "breathing" dynamics, and antibody-dependent enhancement (ADE).

View Article and Find Full Text PDF

Evaluation of two IgG-scFv bispecific antibodies for neutralizing Omicron variants of SARS-CoV-2.

J Virol Methods

September 2025

Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora, Mexico. Electronic address:

Bispecific antibodies (bsAbs) offer an alternative to monoclonal antibody (mAb) cocktails for addressing the loss of efficacy due to the rapid emergence of SARS-CoV-2 mutants. The structure and specificity of the parental antibodies influence the development of a highly neutralizing bsAb. To design an effective bsAb, the recognition of 44 single-chain fragment variable (scFv) antibodies against variants of SARS-CoV-2 was evaluated, along with an assessment of their ability to competitively bind to the receptor-binding domain (RBD) compared to the most potent neutralizing mAbs.

View Article and Find Full Text PDF