98%
921
2 minutes
20
Wastewater-based surveillance (WBS) of SARS-CoV-2 is increasingly recognized as a valuable complement to clinical reporting for estimating COVID-19 infection rates. This acceptance stems from the strong correlation found between wastewater and clinical case data during the early stages of the pandemic. However, the cessation of COVID-19 restrictions, changes in clinical testing requirements by late 2021, and the widespread use of take-home antigen tests have diminished the reliability and volume of clinically reported case counts. This study explores the dynamics between clinical cases and wastewater-based results in a period of transition, focusing on student residential areas within a university campus. We analyzed wastewater from 13 sub-sewersheds, serving populations of 300 to 4000 individuals, three times weekly from December 2021 to June 2022. The analysis revealed two COVID-19 spikes in wastewater data during this time, whereas clinical reports indicated at most a single surge in infections across most communities. Further, in the first infection surge, clinical data plateaued sooner than wastewater trends and, in the second surge, either lagged or were completely absent. Correlations between wastewater SARS-CoV-2 concentrations and the 3-day rolling average of clinical cases were weak in smaller communities (≤1000 people) but improved with larger community sizes (>1000 people). Normalization with PMMoV did not enhance these correlations. Given the challenges in executing widespread and accurate mass clinical testing, our findings advocate for the efficacy of WBS data in reliably forecasting infection surges, even in less populous settings, thereby facilitating swift, informed public health interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2025.179007 | DOI Listing |
Mar Pollut Bull
September 2025
Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong; State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Kowloon, Hong Kong. Electronic address:
Climate change and anthropogenic pressures alter phytoplankton phenology, distribution, and bloom frequency. Healthy phytoplankton communities are crucial for biogeochemical processes, blue carbon sequestration, and climate change mitigation. By employing high-throughput 18S V4 rRNA metabarcoding, we addressed the need for profiling phytoplankton community and response mechanisms in urbanized coastal ecosystems.
View Article and Find Full Text PDFWater Res
August 2025
Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea. Electronic address:
Wastewater-based epidemiology (WBE) is increasingly used as a complementary tool for monitoring drug use at the population level, providing anonymized, real-time estimates of community drug consumption. Site-specific applications of WBE can identify localized patterns that national or municipal surveys may overlook. This study presents the first comprehensive, site-specific assessment of illicit drug use in South Korea using WBE.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2025
Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA.
Eight wastewater samples were collected from three sites in State College, Pennsylvania, during June and July 2024. Nineteen were isolated and sequenced. Three isolates were ≤9 SNPs different from human cases deposited in GenBank, highlighting the potential for wastewater-based surveillance to monitor outbreaks.
View Article and Find Full Text PDFEuro Surveill
September 2025
Crisis Preparedness and Response, Sciensano, Brussels, Belgium.
Following the experience gained during the COVID-19 pandemic, the Belgian Risk Assessment Group (RAG) developed the Respi-Radar in the summer of 2023 to assess the epidemiological situation of respiratory infections and inform public health preparedness and response in Belgium. The Respi-Radar consists of four risk levels (green, yellow, orange and red), which indicate the extent of viral circulation and/or pressure on the healthcare system. Based on these risk levels, authorities can apply adequate measures depending on the epidemiological trends.
View Article and Find Full Text PDFWater Res
August 2025
Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA. Electronic address:
Municipal wastewater may serve as a critical community-composite sample for monitoring bacteria excreted by the contributing population, providing insights into public health risks and microbial diversity. The present study emphasizes the integration of DNA (full-length 16S rRNA) methods, untargeted RNA methods, and different bioinformatic protocols to identify potential human bacterial pathogens in wastewater. Results revealed that, DNA surveillance identified roughly 50 % of the sequencing reads were associated with potentially pathogenic bacteria, as compared to RNA surveillance, which identified roughly 33 % of the reads as associated with potential bacterial pathogens.
View Article and Find Full Text PDF