Mapping Tumor-Stroma-ECM Interactions in Spatially Advanced 3D Models of Pancreatic Cancer.

ACS Appl Mater Interfaces

Centre for 3D models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, U.K.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bioengineering-based tumor models are increasingly important as tools for studying disease progression and therapy response for many cancers, including the deadly pancreatic ductal adenocarcinoma (PDAC) that exhibits a tumor/tissue microenvironment of high cellular/biochemical complexity. Therefore, it is crucial for models to capture that complexity and to enable investigation of the interplay between cancer cells and factors such as extracellular matrix (ECM) proteins or stroma cells. Using polyurethane (PU) scaffolds, we performed a systematic study on how different ECM protein scaffold coatings impact the long-term cell evolution in scaffolds containing only cancer or only stroma cells (activated stellate and endothelial cells). To investigate potential further changes in those biomarkers due to cancer-stroma interactions, we mapped their expression in dual/zonal scaffolds consisting of a cancer core and a stroma periphery, spatially mimicking the fibrotic/desmoplastic reaction in PDAC. In our single scaffolds, we observed that the protein coating affected the cancer cell spatial aggregation, matrix deposition, and biomarker upregulation in a cell-line-dependent manner. In single stroma scaffolds, different levels of fibrosis/desmoplasia in terms of ECM composition/quantity were generated depending on the ECM coating. When studying the evolution of cancer and stroma cells in our dual/zonal model, biomarkers linked to cell aggressiveness/invasiveness were further upregulated by both cancer and stroma cells as compared to single scaffold models. Collectively, our study advances the understanding of how different ECM proteins impact the long-term cell evolution in PU scaffolds. Our findings show that within our bioengineered models, we can stimulate the cells of the PDAC microenvironment to develop different levels of aggressiveness/invasiveness, as well as different levels of fibrosis. Furthermore, we highlight the importance of considering spatial complexity to map cell invasion. Our work contributes to the design of models with variable, yet biomimetic, tissue-like properties for studying the tumor microenvironment's role in cancer progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931495PMC
http://dx.doi.org/10.1021/acsami.5c02296DOI Listing

Publication Analysis

Top Keywords

stroma cells
16
cancer stroma
12
cancer
8
ecm proteins
8
impact long-term
8
long-term cell
8
cell evolution
8
evolution scaffolds
8
cells
7
models
6

Similar Publications

Follicular dendritic cell sarcoma (FDCS) is a rare tumour derived from dendritic cells located in B-follicles that play a pivotal role in the adaptive immune response. Surgery is the mainstay of treatment for localized disease; however, the management of unresectable or advanced disease is less well-defined. To date, to the best of our knowledge, there is no established or preferred chemotherapeutic regimen, although a number of regimens (primarily used in lymphomas and sarcomas) have been utilized with suboptimal outcomes.

View Article and Find Full Text PDF

Evaluation of tumor infiltrating lymphocytes as recommended by current guidelines is largely based on stromal regions within the tumor. In the context of epithelial malignancies, the epithelial region and the epithelial-stromal interface are not assessed, because of technical difficulties in manually discerning lymphocytes when admixed with epithelial tumor cells. The inability to quantify immune cells in epithelial-associated areas may negatively impact evaluation of patient response to immune checkpoint therapies.

View Article and Find Full Text PDF

Integrins from extracellular vesicles as players in tumor microenvironment and metastasis.

Cancer Metastasis Rev

September 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.

Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.

View Article and Find Full Text PDF

Soft tissue sarcomas are a heterogeneous group of malignancies arising from mesenchymal cells. Recent advancements in genomic profiling have identified novel gene fusions in these tumors, offering new insights into their pathogenesis and potential therapeutic targets. Here, we describe a spindle cell sarcoma harboring a novel gene fusion.

View Article and Find Full Text PDF

There is limited understanding of the impact of anti-IL5 treatment on nasal polyp tissue biology in chronic rhinosinusitis with nasal polyps (CRSwNP). This study examined nasal polyp tissue cellular proteome and transcriptome responses to anti-IL5 treatment in CRSwNP utilising spatial profiling. GeoMx™ Digital Spatial Profiling (DSP) of 80 proteins and 1,833 mRNA targets in the polyp stroma and the whole transcriptome (18,815 mRNA targets) in polyp epithelia was undertaken on sinonasal biopsies collected from 20 individuals with eosinophilic CRSwNP before and after 16 and 24 weeks of mepolizumab treatment.

View Article and Find Full Text PDF