Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The present study reports on the adsorptive removal of heavy metals (Cr, Cd, and Cu) from water by a series of branch-based adsorbents: branch (denoted as LB), fungal fermented LB (FLB), LB biochar (LBB), FLB biochar (FLBB), alkaline modified LBB (ALBB), and alkaline modified FLBB (AFLBB). The six adsorbents were characterized in terms of FTIR, SEM, surface area and pore size as well as zeta potential. The adsorptive potential of these adsorbents was tested under varying conditions - pH, contact time, initial concentration, and temperature. Adsorption results were well fitted with Langmuir, Freundlich, and Temkin models. The maximum adsorption capacity () was calculated to be 6.29 mg/g for Cr by FLB, 11.53 mg/g for Cd by LB, and 7.27 mg/g for Cu by LB. The pseudo-second-order kinetic equation better described the adsorption process. Based on the thermodynamics parameters, the adsorption of heavy metals was endothermic but not spontaneous for biochars. The experimental results offer a new way for recycling and reutilizing LB in wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2022.067 | DOI Listing |