98%
921
2 minutes
20
Climate change is making droughts more frequent, which is a major problem for crop yield, especially for crops that are vulnerable to drought, such as common buckwheat (Fagopyrum esculentum). Drought stress affects negatively on physiological and biochemical processes of plants, leading to reduced yields. This study addresses the knowledge gap regarding effective strategies to mitigate drought-induced damage and enhance productivity in buckwheat. We hypothesized that iron oxide nanoparticles (FeO NPs) and rice husk biochar could improve drought tolerance in buckwheat by modulating its physiological and biochemical responses. To test this, buckwheat plants were grown under well-watered (80% of field capacity, FC) and drought (40% of FC) conditions following a completely randomized design (CRD) with three replications. Results showed that the application of 50 g/kg rice husk biochar and 400 ppm FeO NPs, either separately or in combination, significantly enhanced the yield and improved key physiological and biochemical traits, including relative water content, photosynthetic rate, stomatal conductance, chlorophyll content, and antioxidant activity. The combination of FeO NPs and rice husk biochar led to improvements the plants' relative water content, photosynthetic rate, chlorophyll levels, membrane stability index, proline, antioxidant activity (DPPH), and seed yield by 22.37, 17.11, 43.05, 16.07, 43.75, 8.59, and 50.87%, respectively compared to untreated drought plants. Moreover, this treatment reduced oxidative stress indicators such as hydrogen peroxide and malondialdehyde by 31.09 and 38.19%, respectively. These results show that FeO NPs, when combined with rice husk biochar, significantly improve drought tolerance in common buckwheat, providing a viable strategy to increase crop yields in water-limited environments. In view of climate change, this study emphasises the potential of combining biochar with nanomaterials for sustainable agricultural practices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885677 | PMC |
http://dx.doi.org/10.1038/s41598-025-90736-3 | DOI Listing |
Chem Asian J
September 2025
Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
In this study, a silicon carbide (SiC) mixed-matrix membrane for oil-water separation was successfully fabricated within the nanofiltration range. Silicon carbide was synthesized using rice husk ash (RHA), an agricultural waste material, combined with polydimethylsiloxane (PDMS) and subsequently incorporated into a mixed matrix membrane for oil-water separation. Polysulfone (PSF) and polyvinylpyrrolidone (PVP) were employed as polymer supports for fabricating the SiC-based mixed matrix membrane, which was tested in a dead-end filtration setup.
View Article and Find Full Text PDFEnviron Res
September 2025
College of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China. Electronic address:
This study investigates the effects of pyrolytic temperature and feedstock type on the release of biochar-derived dissolved organic matter (BDOM) and its impact on the soil bacterial community and the composition of soil dissolved organic matter (SDOM). The BDOM was extracted from biochars produced from sheep bones, rice husk, and rabbit manure, prepared at low (400 °C, LPT) or high (700 °C, HPT) pyrolytic temperatures. The BDOM was then applied at a concentration of 2.
View Article and Find Full Text PDFACS Omega
August 2025
VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology (VIT), Vellore 632 014, India.
The efficient handling of agricultural waste is rapidly gaining worldwide recognition. This study analyzes the impact of three distinct pyrolysis temperatures (250, 300, and 350 °C) on the physicochemical properties of the biochar produced from rice husk, sugarcane bagasse, and groundnut shells with a fixed pyrolysis time of 3 h. The influence of the pyrolysis temperature was assessed by calculating the biochar yield, electrical conductivity (EC), pH, proximate analysis, and ultimate analysis.
View Article and Find Full Text PDFEnviron Res
August 2025
International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India; Institute for Interdisciplinary and Innovation Research, Xi'an University of Architecture and Technology, Xi'an 710055, P.R. China. Electronic address: gaurav.541@shooloni
This research investigates the synthesis and application of a bioderived xerogel (BDX) synthesized from rice husk and tannins to eliminate Ciprofloxacin (CIP) from water-based media. Xerogel was prepared via sol-gel method, incorporating rice husk ash and tannin extract, along with polyvinyl alcohol (PVA) as a binding agent. Characterization techniques including, FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy), TGA (Thermogravimetric Analysis), and BET (Brunauer-Emmett-Teller) surface area analysis were employed to evaluate its structural and chemical properties.
View Article and Find Full Text PDFGels
July 2025
Department of Chemical Dynamics and Permanent Education, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia.
Silica/alumina composite particles were synthesized via the sol-gel method to promote fine dispersion and homogenous mixing. Aluminum chloride hydroxide served as the alumina precursor, while amorphous silica, obtained from rice husk, was directly incorporated into the alumina sol. Following synthesis, the material was calcined at 1000 °C, yielding an α-cristobalite form of silica and corundum-phase alumina.
View Article and Find Full Text PDF