98%
921
2 minutes
20
Aims: Cardiovascular disease is the most common complication and cause of death in people with diabetes. Hypoglycaemia is independently associated with the development of cardiovascular complications, including death. The aim of this study was to assess changes in cardiac function and workload during acute hypoglycaemia in people with and without diabetes and to explore the role of diabetes type, magnitude of the adrenaline response, and other phenotypic traits.
Materials And Method: We enrolled people with type 1 diabetes (n = 24), people with insulin-treated type 2 diabetes (n = 15) and controls without diabetes (n = 24). All participants underwent a hyperinsulinaemic-normoglycaemic-(5.3 ± 0.3 mmol/L)-hypoglycaemic (2.8 ± 0.1 mmol/L)-glucose clamp. Cardiac function was assessed by echocardiography, with left ventricular ejection fraction (LVEF) as the primary endpoint.
Results: During hypoglycaemia, LVEF increased significantly in all groups compared to baseline (6.2 ± 5.2%, p < 0.05), but the increase was significantly lower in type 1 diabetes compared to controls without diabetes (5.8 ± 3.4% vs. 9.4 ± 5.0%, p = 0.03, 95% CI difference: -5.0, -0.3). In people with type 1 diabetes, ΔLVEF was inversely associated with diabetes duration (β: -0.16, 95% CI: -0.24, -0.53, p = 0.001) and recent exposure to hypoglycaemia (β: -0.30, 95% CI: -0.53, -0.07, p = 0.015). Hypoglycaemia also increased global longitudinal strain (GLS) in controls without diabetes (p < 0.05), but this did not occur in the two diabetes subgroups (p > 0.10).
Conclusions: Hypoglycaemia increased LVEF in all groups, but the increase diminished with longer disease duration and prior exposure to hypoglycaemia in type 1 diabetes, suggesting adaptation to recurrent hypoglycaemia. The increment in GLS observed in controls was blunted in people with diabetes. More research is needed to determine the clinical relevance of these findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964998 | PMC |
http://dx.doi.org/10.1111/dom.16283 | DOI Listing |
Ann Am Thorac Soc
September 2025
University of Florida, Department of Medicine, Gainesville, Florida, United States;
Background: Pulmonary hypertension (PH) is a systemic illness with increasingly subtle disease manifestations including sleep disruption. Patients with PH are at increased risk for disturbances in circadian biology, although to date there is no data on "morningness" or "eveningness" in pulmonary vascular disease.
Research Questions: Our group studied circadian rhythms in PH patients based upon chronotype analysis, to explore whether there is a link between circadian parameters and physiologic risk-stratifying factors to inform novel treatment strategies in patients with PH?
Study Design And Methods: We serially recruited participants from July 2022 to March 2024, administering in clinic the Munich Chronotype Questionnaire (MCTQ).
Channels (Austin)
December 2025
Biorheology Research Laboratory, Faculty of Health, Griffith University, Gold Coast, Australia.
The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.
View Article and Find Full Text PDFPol Merkur Lekarski
September 2025
I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE.
Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..
Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.
Annu Rev Med
September 2025
3Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
Chronic cough can coexist with or without pulmonary and extrapulmonary conditions and can be refractory to therapies that improve these associated conditions. It is underlined by cough hypersensitivity, which is characterized by increased cough responses to stimuli that affect the airways and vagally innervated tissues as well as by excessive cough responses to innocuous stimuli, and it is caused by neuroinflammatory and neuropathic mechanisms at both peripheral and central levels. The management of chronic cough starts with exclusion of associated conditions, followed by use of neuromodulators and speech and language therapy.
View Article and Find Full Text PDFAnnu Rev Pathol
September 2025
3Department of Pathology, Stanford University, Stanford, California, USA;
Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.
View Article and Find Full Text PDF