A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CA-VAR-Markov model of user needs prediction based on user generated content. | LitMetric

CA-VAR-Markov model of user needs prediction based on user generated content.

Sci Rep

School of Art and Design, Guilin University of Technology, Guilin, 541000, Guangxi, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the contemporary, fiercely competitive marketplace, companies must adeptly navigate the complexities of understanding and fulfilling user needs to succeed. By mining potential user needs from User Generated Content (UGC) on social media platforms, businesses can design products that resonate with users' needs, thereby swiftly capturing market share. When predicting user needs in this paper, the collected UGC is first processed through operations such as deduplication, word segmentation, and stop-word removal. Subsequently, Latent Dirichlet Allocation (LDA) is employed to extract product attribute features from UGC, cluster them to identify user needs and classify documents accordingly. The Bidirectional Encoder Representations from Transformers (BERT) model is then utilized for word vector feature extraction of the categorized documents, while also taking into account user interaction metrics to perform sentiment analysis of user needs using Long Short-Term Memory (LSTM). Finally, a Correlation Analysis-Vector Autoregressive-Markov (CA-VAR-Markov) model is constructed to forecast the evolution of user needs, and the Analytical Kano (A-Kano) model is applied for an in-depth analysis to propose strategies for product design optimization. In the case study, this paper takes the UGC from "Autohome" as an example to predict the user needs for the NIO EC6. Compared with LSTM and ARIMA, the prediction results are more accurate. Based on the prediction results and combined with the A-KANO model, suggestions are put forward for the optimization of the NIO EC6. The final results prove that the methods for identifying and predicting user needs proposed in this paper can effectively predict the development trend of user needs, providing a reference for enterprises to optimize their products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882829PMC
http://dx.doi.org/10.1038/s41598-025-92173-8DOI Listing

Publication Analysis

Top Keywords

user
13
ca-var-markov model
8
user generated
8
generated content
8
predicting user
8
a-kano model
8
nio ec6
8
model user
4
user prediction
4
prediction based
4

Similar Publications