A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

FusionESP: Improved Enzyme-Substrate Pair Prediction by Fusing Protein and Chemical Knowledge. | LitMetric

FusionESP: Improved Enzyme-Substrate Pair Prediction by Fusing Protein and Chemical Knowledge.

J Chem Inf Model

Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To reduce the cost of the experimental characterization of the potential substrates for enzymes, machine learning prediction models offer an alternative solution. Pretrained language models, as powerful approaches for protein and molecule representation, have been employed in the development of enzyme-substrate prediction models, achieving promising performance. In addition to continuing improvements in language models, effectively fusing encoders to handle multimodal prediction tasks is critical for further enhancing model performance by using available representation methods. Here, we present FusionESP, a multimodal architecture that integrates protein and chemistry language models with two independent projection heads and a contrastive learning strategy for predicting enzyme-substrate pairs. Our best model achieved state-of-the-art performance with an accuracy of 94.77% on independent test data and exhibited better generalization capacity while requiring fewer computational resources and training data, compared to previous studies of a fine-tuned encoder or employing more encoders. It also confirmed our hypothesis that embeddings of positive pairs are closer to each other in a high-dimension space, while negative pairs exhibit the opposite trend. Our ablation studies showed that the projection heads played a crucial role in performance enhancement, while the contrastive learning strategy further improved the projection heads' capacity in classification tasks. The proposed architecture is expected to be further applied to enhance performance in additional multimodality prediction tasks in biology. A user-friendly web server of FusionESP is established and freely accessible at https://rqkjkgpsyu.us-east-1.awsapprunner.com/.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.4c02357DOI Listing

Publication Analysis

Top Keywords

language models
12
prediction models
8
prediction tasks
8
projection heads
8
contrastive learning
8
learning strategy
8
prediction
5
models
5
performance
5
fusionesp improved
4

Similar Publications