Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lateral inhibition is a central principle in sensory system function. It is thought to operate by the activation of inhibitory neurons that restrict the spatial spread of sensory excitation. However, the neurons, computations and mechanisms underlying cortical lateral inhibition remain debated, and its importance for perception remains unknown. Here we show that lateral inhibition from parvalbumin neurons in mouse primary visual cortex reduced neural and perceptual sensitivity to visual contrast in a uniform subtractive manner, whereas lateral inhibition from somatostatin neurons more effectively changed the slope (or gain) of neural and perceptual contrast sensitivity. A neural circuit model, anatomical tracing and direct subthreshold measurements indicated that the larger spatial footprint for somatostatin versus parvalbumin synaptic inhibition explains this difference. Together, these results define cell-type-specific computational roles for lateral inhibition in primary visual cortex, and establish their unique consequences on sensitivity to contrast, a fundamental aspect of the visual world.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41593-025-01888-4DOI Listing

Publication Analysis

Top Keywords

lateral inhibition
24
neural perceptual
12
perceptual contrast
8
contrast sensitivity
8
primary visual
8
visual cortex
8
lateral
6
inhibition
6
inhibition controls
4
neural
4

Similar Publications

Transcriptome Analysis Reveals the Mechanism of Early Branching of Balsa (Ochroma lagopus Swartz).

Physiol Plant

September 2025

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.

Balsa (Ochroma lagopus Swartz), the world's lightest wood and a crucial material in wind turbine blades, holds significant potential to contribute to carbon neutrality efforts when cultivated in tropical areas such as Xishuangbanna, China. However, balsa trees planted in Xishuangbanna exhibit early branching, resulting in reduced wood yield. Our study investigated the pivotal factors in regulating shoot apical dominance and branching by comparing an early-branching cultivar from Indonesia with a late-branching cultivar from Ecuador.

View Article and Find Full Text PDF

Hormonal regulation of cell fate plasticity of xylem-pole-pericycle lineage in Arabidopsis roots.

Mol Plant

September 2025

Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland. Electronic address:

In Arabidopsis roots, xylem-pole-pericycle (XPP) cells exhibit dual cell fates by contributing to both lateral root (LR) and cambium formation. Despite the significant progress in understanding these processes individually, the mechanism deciding between these two fates and its contribution on root architecture and secondary growth remain unknown. Here we combined lineage tracing with molecular genetics to study the regulation of fate plasticity of XPP cell lineage.

View Article and Find Full Text PDF

Although phasic alertness generally benefits cognitive performance, it often increases the impact of distracting information, resulting in impaired decision-making and cognitive control. However, it is unclear why phasic alertness has these negative effects. Here, we present a novel, biologically-informed account, according to which phasic alertness generates a transient, evidence-independent input to the decision process.

View Article and Find Full Text PDF

From Growth to Survival: Aux/IAA Genes in Plant Development and Stress Management.

Plant Sci

September 2025

Fermentation and Phytofarming Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address:

Auxin, one of the earliest recognized and extensively investigated phytohormones, is crucial in plant growth and survival in adverse environmental conditions. Two gene families primarily regulate auxin signaling: auxin response factors (ARFs) and auxin/indole-3-acetic acid (Aux/IAA). Aux/IAA family proteins are recognized as essential elements of the nuclear auxin signaling system, inhibiting gene transcription in their presence and facilitating gene activation upon their degradation.

View Article and Find Full Text PDF