A comprehensive analytical model for predicting drug absorption in the olfactory region: Application to nose-to-brain delivery.

Int J Pharm

TIPs (Transfers, Interfaces and Processes), Avenue Franklin Roosevelt, 50, Brussels, 1050, Belgium.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nose-to-brain drug delivery offers a promising route for administering pharmaceutical substances directly to the brain. However, this pathway faces significant challenges, such as mucociliary clearance and enzymatic activity in the nasal cavity, which limit drug absorption. Although several formulation strategies exist to enhance drug solubility, diffusion across the airway surface liquid, and protection from enzymatic degradation, there is a lack of tools to systematically evaluate which strategy is best suited for specific molecules. To address this, we developed an analytical model of the olfactory region that integrates drug dissolution, diffusion through the mucus and periciliary layers, advection by mucociliary clearance, and enzymatic degradation. This analytical model allows to estimate the fraction of a drug, formulated as a powder and deposited in the olfactory region, that is indeed dissolved in the mucus and absorbed by the cells, and to identify the most influential physicochemical properties in the absorption process. To demonstrate the model's utility, we 3D-printed custom-made diffusion cells to measure experimentally the diffusion coefficients of caffeine, levodopa, and paliperidone palmitate, incorporating these values into our simulations. Based on these data, we predicted drug absorption levels and proposed strategies to optimise them. By applying the model to an existing formulation, we demonstrated that careful adjustments to a drug's properties can significantly enhance the fraction absorbed in the olfactory region. Additionally, we explored how the site of drug deposition, influenced by the delivery device, impacts absorption by affecting residence time in the olfactory region. Overall, our analytical model serves as a valuable tool for the development of effective nose-to-brain formulations and the selection of optimal administration devices, streamlining the process and reducing the need for extensive in vitro and in vivo testing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2025.125392DOI Listing

Publication Analysis

Top Keywords

olfactory region
20
analytical model
16
drug absorption
12
drug
8
mucociliary clearance
8
clearance enzymatic
8
enzymatic degradation
8
model
5
absorption
5
olfactory
5

Similar Publications

Forming social bonds is fundamental in helping us foster connections with others. The loss of a loved one often results in grief, stress, and loneliness, and the stress response system of the body has been implicated in the physiological symptoms associated with grieving. Corticotropin releasing factor (CRF) is the hormone that initiates the stress response in the body and acts at two different receptor subtypes CRF receptor (CRFR)1 and CRFR2.

View Article and Find Full Text PDF

The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.

View Article and Find Full Text PDF

Background: Taste and smell disorders are more common in individuals with diabetes, particularly among those with low insulin sensitivity or central obesity. These disorders may affect glycaemic control by altering dietary habits. This study aimed to investigate self-reported taste and smell dysfunction in individuals with diabetes and explore associations with clinical and behavioural factors.

View Article and Find Full Text PDF

Neuroanatomical profiling of the rainbow trout brain parenchyma and meninges reveals specialized immune niches and region-specific hubs for bacterial immune surveillance.

Dev Comp Immunol

September 2025

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA. Electronic address:

Several studies have described immune responses in the teleost brain and meninges during infection, however, fundamental studies that systematically dissect how different regions of the brain maintain immune homeostasis in teleosts are missing. Here we present an in-depth investigation of the immune status of the brain parenchyma and meninges of juvenile rainbow trout (Oncorhynchus mykiss) at the steady state. We dissected four parenchymal brain regions including olfactory bulbs (OB), telencephalon (Tel), optic tectum (OT) and cerebellum (Cer) and its corresponding dorsal meninges.

View Article and Find Full Text PDF

Taste and smell are critical for food intake and maintaining adequate energy balance, particularly in isolated, confined, and extreme (ICE) environments. Hypoxic conditions, low humidity, and limited chemosensory exposure at Concordia Station in Antarctica may impair taste and smell functions, though research remains scarce. Gustatory and olfactory functions were assessed in 19 participants (39.

View Article and Find Full Text PDF