Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Digital image forensics plays a crucial role in image authentication and manipulation localization. Despite the progress powered by deep neural networks, existing forgery localization methodologies exhibit limitations when deployed to unseen datasets and perturbed images (i.e., lack of generalization and robustness to real-world applications). To circumvent these problems and aid image integrity, this paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts. The rationale is grounded on the observation that most image signal processors (ISP) involve the demosaicing process, which introduces pixel correlations in pristine images. Moreover, manipulating operations, including splicing, copy-move, and inpainting, directly affect such pixel regularity. We, therefore, first split the input image into several blocks and design masked self-attention mechanisms to model the global pixel dependency in input images. Simultaneously, we optimize another local pixel dependency stream to mine local manipulation clues within input forgery images. In addition, we design novel Learning-to-Weight Modules (LWM) to combine features from the two streams, thereby enhancing the final forgery localization performance. To improve the training process, we propose a novel Pixel-Inconsistency Data Augmentation (PIDA) strategy, driving the model to focus on capturing inherent pixel-level artifacts instead of mining semantic forgery traces. This work establishes a comprehensive benchmark integrating 16 representative detection models across 12 datasets. Extensive experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints and achieve state-of-the-art generalization and robustness performances in image manipulation localization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2025.3541028 | DOI Listing |