98%
921
2 minutes
20
Objective: Working with the Riemannian manifold of symmetric positive-definite (SPD) matrices has become popular in electroencephalography (EEG) analysis. Frequently selected for its speed property is the manifold geometry provided by the log-euclidean Riemannian metric. However, the kernels used in the log-euclidean framework are not canonically based on the underlying geometry. Therefore, we introduce a new canonical log-euclidean (CLE) kernel.
Methods: We used the log-euclidean metric tensor on the SPD manifold to derive the CLE kernel. We compared it with existing kernels, namely the affine-invariant, log-euclidean, and Gaussian log-euclidean kernel. For comparison, we tested the kernels on two paradigms: classification and dimensionality reduction. Each paradigm was evaluated on five open-access brain-computer interface datasets with motor-imagery tasks across multiple sessions. Performance was measured as balanced classification accuracy using a leave-one-session-out cross-validation. Dimensionality reduction performance was measured using AUClogRNX.
Results: The CLE kernel itself is simple and easily turned into code, which is provided in addition to all the analytical solutions to relevant equations in the log-euclidean framework. The CLE kernel significantly outperformed existing log-euclidean kernels in classification tasks and was several times faster than the affine-invariant kernel for most datasets.
Conclusion: We found that adhering to the geometrical structure significantly improves the accuracy over two commonly used log-euclidean kernels while keeping the speed advantages of the log-euclidean framework.
Significance: The CLE provides a good choice as a kernel in time-critical applications and fills a gap in the kernel methods of the log-euclidean framework.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2024.3483936 | DOI Listing |
Objective: Working with the Riemannian manifold of symmetric positive-definite (SPD) matrices has become popular in electroencephalography (EEG) analysis. Frequently selected for its speed property is the manifold geometry provided by the log-euclidean Riemannian metric. However, the kernels used in the log-euclidean framework are not canonically based on the underlying geometry.
View Article and Find Full Text PDFNetw Neurosci
January 2023
Laboratory for Complex Brain Networks, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
Brain network analyses have exploded in recent years and hold great potential in helping us understand normal and abnormal brain function. Network science approaches have facilitated these analyses and our understanding of how the brain is structurally and functionally organized. However, the development of statistical methods that allow relating this organization to phenotypic traits has lagged behind.
View Article and Find Full Text PDFIEEE Trans Cybern
August 2023
In many classification scenarios, the data to be analyzed can be naturally represented as points living on the curved Riemannian manifold of symmetric positive-definite (SPD) matrices. Due to its non-Euclidean geometry, usual Euclidean learning algorithms may deliver poor performance on such data. We propose a principled reformulation of the successful Euclidean generalized learning vector quantization (GLVQ) methodology to deal with such data, accounting for the nonlinear Riemannian geometry of the manifold through log-Euclidean metric (LEM).
View Article and Find Full Text PDFBrain Sci
May 2022
School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
Background: Recording the calibration data of a brain-computer interface is a laborious process and is an unpleasant experience for the subjects. Domain adaptation is an effective technology to remedy the shortage of target data by leveraging rich labeled data from the sources. However, most prior methods have needed to extract the features of the EEG signal first, which triggers another challenge in BCI classification, due to small sample sets or a lack of labels for the target.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2022
Department of Radiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
Diffusion tensor imaging (DTI) data interpolation is important for DTI processing, which could affect the precision and computational complexity in the process of denoising, filtering, regularization, and DTI registration and fiber tracking. In this paper, we propose a novel DTI interpolation framework named with spectrum-sine (SS) focusing on tensor orientation variation in DTI processing. Compared with the state-of-the-art DTI interpolation method using Euler angles or quaternion to represent the orientation of DTI tensors, this method does not need to convert eigenvectors into Euler angles or quaternions, but interpolates each tensor's unit eigenvector directly.
View Article and Find Full Text PDF