98%
921
2 minutes
20
Recent advances in learning-based methods have markedly enhanced the capabilities of image compression. However, these methods struggle with high bit-depth volumetric medical images, facing issues such as degraded performance, increased memory demand, and reduced processing speed. To address these challenges, this paper presents the Bit-Division based Lossless Volumetric Image Compression (BD-LVIC) framework, which is tailored for high bit-depth medical volume compression. The BD-LVIC framework skillfully divides the high bit-depth volume into two lower bit-depth segments: the Most Significant Bit-Volume (MSBV) and the Least Significant Bit-Volume (LSBV). The MSBV concentrates on the most significant bits of the volumetric medical image, capturing vital structural details in a compact manner. This reduction in complexity greatly improves compression efficiency using traditional codecs. Conversely, the LSBV deals with the least significant bits, which encapsulate intricate texture details. To compress this detailed information effectively, we introduce an effective learning-based compression model equipped with a Transformer-Based Feature Alignment Module, which exploits both intra-slice and inter-slice redundancies to accurately align features. Subsequently, a Parallel Autoregressive Coding Module merges these features to precisely estimate the probability distribution of the least significant bit-planes. Our extensive testing demonstrates that the BD-LVIC framework not only sets new performance benchmarks across various datasets but also maintains a competitive coding speed, highlighting its significant potential and practical utility in the realm of volumetric medical image compression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2024.3513156 | DOI Listing |
Sci Rep
March 2025
Faculty of Engineering & IT, University of Technology Sydney, Sydney, Australia.
Chaos-based encryption methods have gained popularity due to the unique properties of chaos. The performance of chaos-based encryption methods is highly impacted by the values of initial and control parameters. Therefore, this work proposes Iterative Cosine operator-based Hippopotamus Optimization (ICO-HO) to select optimal parameters for chaotic maps, which is further used to design an adaptive image encryption approach.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2024
Recent advances in learning-based methods have markedly enhanced the capabilities of image compression. However, these methods struggle with high bit-depth volumetric medical images, facing issues such as degraded performance, increased memory demand, and reduced processing speed. To address these challenges, this paper presents the Bit-Division based Lossless Volumetric Image Compression (BD-LVIC) framework, which is tailored for high bit-depth medical volume compression.
View Article and Find Full Text PDFJ Biophotonics
March 2025
Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.
View Article and Find Full Text PDFPLoS One
December 2024
GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou, Guangdong province, China.
Multilevel thresholding image segmentation is one of the widely used image segmentation methods, and it is also an important means of medical image preprocessing. Replacing the original costly exhaustive search approach, swarm intelligent optimization algorithms are recently used to determine the optimal thresholds for medical image, and medical images tend to have higher bit depth. Aiming at the drawbacks of premature convergence of existing optimization algorithms for high-bit depth image segmentation, this paper presents a pyramid particle swarm optimization based on complementary inertia weights (CIWP-PSO), and the Kapur entropy is employed as the optimization objective.
View Article and Find Full Text PDFOpt Express
August 2024
The digital light processing (DLP) projector has been widely used in fringe projection profilometry (FPP). The bit depth of the projected fringes is mostly 8-bit or 1-bit to pursue higher measuring accuracy or speed. In this paper, a bit error model is established to evaluate phase quality of the projected fringes with different bit depths.
View Article and Find Full Text PDF