Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The rapid development of renewable energy sources (RESs) has led to their increased integration into microgrids (MGs), emphasizing the need for safe and efficient energy management in MG operations. We investigate the methods of MG energy management, primarily categorized into model-based and model-free approaches. Due to a lack of incremental knowledge, model-based methods need to be reengineered for new scenarios during the optimization process, leading to reduced computational efficiency. In contrast, model-free methods can obtain incremental knowledge via trial-and-error in the training phase, and output energy management scheme rapidly. However, ensuring the safety of the scheme during the training phases poses significant challenges. To address these challenges, we propose a safe reinforcement learning (SRL) framework. The proposed SRL framework initially includes a safety assessment optimization model (SAOM) to evaluate scheme constraints and refine unsafe schemes for ensuring MG safety. Subsequently, based on SAOM, the MG energy management issue is formulated as an assess-based constrained Markov decision process (A-CMDP), enabling the SRL can be adopted in this issue. After that, we adopt a Lyapunov-based safety policy optimization for agent policy learning to ensure that policy updates are confined within a safe boundary, theoretically ensuring the safety of the MG throughout the learning process. Numerical studies highlight the superior performance of our proposed method. Specifically, the SRL framework effectively learns energy management policy, ensures MG safety, and demonstrates outstanding outcomes in the economic operation of MG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2024.3496932 | DOI Listing |