Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Integrating the advantage of the unbiased finite impulse response (UFIR) filter into the Kalman filter (KF) is a practical yet challenging issue, where how to effectively borrow knowledge across domains is a core issue. Existing methods often fall short in addressing performance degradation arising from noise uncertainties. In this article, we delve into a Bayesian transfer filter (BTF) that seamlessly integrates the UFIR filter into the KF through a knowledge-constrained mechanism. Specifically, the pseudo marginal measurement likelihood of the UFIR filter is reused as a constraint to refine the Bayesian posterior distribution in the KF. To optimize this process, we exploit the Kullback-Leibler (KL) divergence to measure and reduce discrepancies between the proposal and target distributions. This approach overcomes the limitations of traditional weight-based fusion methods and eliminates the need for error covariance. Additionally, a necessary condition based on mean square error criteria is established to prevent negative transfer. Using a moving target tracking example and a quadruple water tank experiment, we demonstrate that the proposed BTF offers superior robustness against noise uncertainties compared to existing methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2024.3490580 | DOI Listing |