Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Aptamers, functional nucleic acids recognized for their high target-binding affinity and specificity, have been extensively employed in biosensors, diagnostics, and therapeutics. Conventional screening methods apply evolutionary pressure to optimize affinity, while counter-selections are used to minimize off-target binding and improve specificity. However, aptamer specificity characterization remains limited to target analogs and experimental controls. A systematic exploration of the chemical space for aptamer-binding chemicals (targets) is crucial for uncovering aptamer versatility and enhancing target specificity in practical applications, a task beyond the scope of experimental approaches. To address this, we employed a high-throughput three-stage structure-based computational framework to identify potent binders for two model aptamers. Our findings revealed that the l-argininamide (L-Arm)-binding aptamer has a 31-fold higher affinity for the retromer chaperone R55 than for L-Arm itself, while guanethidine and ZINC10314005 exhibited comparable affinities to L-Arm. In another case, norfloxacin and difloxacin demonstrated over 10-fold greater affinity for the ochratoxin A (OTA)-binding aptamer OBA3 than OTA, introducing a fresh paradigm in aptamer-target interactions. Furthermore, pocket mutation studies highlighted the potential to tune aptamer specificity, significantly impacting the bindings of L-Arm or norfloxacin. These findings demonstrate the effectiveness of our computational framework in discovering potent aptamer binders, thereby expanding the understanding of aptamer-binding versatility and advancing nucleic acid-targeted drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.4c01246 | DOI Listing |