Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Roux-en-Y gastric bypass (RYGB) results in glucose-lowering in patients with type 2 diabetes mellitus (T2DM) and may be associated with increased intestinal glucose excretion. However, the contribution of intestinal glucose excretion to glycemic control after RYGB and its underlying mechanisms are not fully elucidated. Here, we confirmed that intestinal glucose excretion significantly increased in obese rats after RYGB, which was negatively correlated with postoperative blood glucose levels. Moreover, we also found that the contribution of Biliopancreatic limb length, an important factor affecting glycemic control after RYGB, to the improvement of glucose metabolism after RYGB attributed to the enhancement of intestinal glucose excretion. Subsequently, we further determined through multiple animal models that intestinal glucose excretion is physiological rather than pathological and plays a crucial role in maintaining glucose homeostasis in the body. Finally, we employed germ-free mice colonized with fecal samples from patients and rats to demonstrate that enhanced intestinal glucose excretion after RYGB is directly modulated by the surgery-induced changes in the gut microbiota. These results indicated that the gut microbiota plays a direct causal role in the hypoglycemic effect of RYGB by promoting intestinal glucose excretion, which may provide new insights for developing gut microbiota-based therapies for T2DM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881838 | PMC |
http://dx.doi.org/10.1080/19490976.2025.2473519 | DOI Listing |