Limitations and Applications of Rodent Models in Tauopathy and Synucleinopathy Research.

J Neurochem

Department of Microbiology, Immunology, & Pathology and Prion Research Center, Colorado State University, Fort Collins, Colorado, USA.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rodent models that accurately recapitulate key aspects of human disease have long been fundamental to the successful development of clinical interventions. This is greatly underscored in the neurodegenerative disease field, where preclinical testing of anti-prion therapeutics against rodent-adapted prions resulted in the development of small molecules effective against rodent-adapted prions but not against human prions. These findings provided critical lessons for ongoing efforts to develop treatments for patients with neurodegenerative diseases caused by misfolding and accumulation of the proteins tau and α-synuclein, or tauopathies and synucleinopathies, respectively. To avoid the potential pitfalls previously identified in the prion field, this review focuses on rodent models currently available to study tau and α-synuclein disease pathogenesis, emphasizing the strengths and limitations of each with the particular goal of better supporting preclinical research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874209PMC
http://dx.doi.org/10.1111/jnc.70021DOI Listing

Publication Analysis

Top Keywords

rodent models
12
rodent-adapted prions
8
tau α-synuclein
8
limitations applications
4
applications rodent
4
models tauopathy
4
tauopathy synucleinopathy
4
synucleinopathy rodent
4
models accurately
4
accurately recapitulate
4

Similar Publications

Timing Matters: How Daily Rhythms Affect Remote Ischemic Postconditioning Therapy for Stroke.

Stroke

September 2025

Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston (E.L., R.M.P., K.H., E.H.L., E.E.).

Background: Despite promising preclinical results, remote limb ischemic postconditioning efficacy in human stroke treatment remains unclear, with mixed clinical trial outcomes. A potential reason for translational difficulties could be differences in circadian rhythms between nocturnal rodent models and diurnal humans.

Methods: Male C57BL/6J mice were subjected to transient focal cerebral ischemia and then exposed to remote postconditioning during their active or inactive phase and euthanized at 24 hours and 3 days.

View Article and Find Full Text PDF

The adverse effects of Western diets (WD), high in both fat and simple sugars, which contribute to obesity and related disorders, have been extensively studied in laboratory rodents, but not in non-laboratory animals, which limits the scope of conclusions. Unlike laboratory mice or rats, non-laboratory rodents that reduce body mass for winter do not become obese when fed a high-fat diet. However, it is not known whether these rodents are also resistant to the adverse effects of WD.

View Article and Find Full Text PDF

Introduction: Anxiety and stress are prevalent mental health issues. Traditional drug treatments often come with unwanted side effects and may not produce the desired results. As an alternative, probiotics are being used as a treatment option due to their lack of specific side effects.

View Article and Find Full Text PDF

PACAP versus CGRP in migraine: From mouse models to clinical translation.

Cephalalgia

September 2025

Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.

Migraine is a complex neurological disorder involving multiple neuropeptides that modulate nociceptive and sensory pathways. The most studied peptide is calcitonin gene-related peptide (CGRP), which is a well-established migraine trigger and therapeutic target. Recently, another peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), has emerged as an alternative target for migraine therapeutics.

View Article and Find Full Text PDF

Major depressive disorder is a prevalent and debilitating psychiatric illness that produces significant disability. Clinical data suggest that the pathophysiology of depression is due, in part, to a dysregulation of inflammation and glutamate levels in the brain. The systemic administration of lipopolysaccharide (LPS) has been shown to induce depressive-like behaviors in mice.

View Article and Find Full Text PDF