98%
921
2 minutes
20
The high-capacity silicon (Si) anode usually suffers from rapid capacity decay and low Coulombic efficiency in carbonate electrolytes resulting from large volume expansion and unstable solid electrolyte interphase (SEI). In addition, the sluggish electrode kinetics in routine electrolytes at subzero temperatures severely hampers the operational capabilities of Si-based batteries. Herein, a rational electrolyte design strategy is reported to tune the solvation chemistry and interfacial behavior of the electrolyte for high-performance Si anode. The interfacial stability and electrochemical reaction kinetics can be enhanced simultaneously at both room temperature and ultralow temperature by combining two kinds of ether-based solvents (cyclopentylmethyl ether and tetrahydrofuran), which enables high cation conductivity, low Li-ion desolvation barrier, and formation of a robust LiF-elastic polymer SEI. Consequently, the optimized electrolyte extends the cyclability of the Si anode, maintaining more than 80% capacity retention over 200 cycles at -20 and -35 °C. Even at -40 °C, the Si electrode still delivers a high reversible capacity of 2157.0 mAh g, showing the highest capacity retention of 68.5% up to date relative to its room-temperature capacity. Moreover, the assembled full cells Si||LiFePO and Si||LiNiCoMnO demonstrate excellent electrochemical performance with no capacity degradation over 180 and 120 cycles, respectively, at -20 °C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202417981 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
In this study, we analyze InO thin-film transistors (InO-TFT) using synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES) in conditions. A bottom-gate InO-TFT with a high- AlO gate dielectric, grown on thermally oxidized silicon (SiO/p-Si), was examined while operating at varying and . The results reveal that the In 3d core level binding energy varies along the horizontal channel length, driven by the potential gradient induced by .
View Article and Find Full Text PDFJ Neural Eng
September 2025
Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, California, 94305, UNITED STATES.
Clinical trials of the photovoltaic subretinal prosthesis PRIMA demonstrated feasibility of prosthetic central vision with resolution matching its 100 μm pixel width. To improve prosthetic acuity further, pixel size should be decreased. However, there are multiple challenges, one of which is related to accommodating a compact shunt resistor within each pixel that discharges the electrodes between stimulation pulses and helps increase the contrast of the electric field pattern.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China.
Electrochemiluminescence (ECL) imaging through closed bipolar nanoelectrode arrays (BPnEAs) has emerged as a promising method for in situ label-free wide-field electrochemical imaging. In this study, a cathodic ECL system based on [Ru(bpz)]/SO is combined with the BPnEAs fabricated on silicon nitride membrane windows through focused ion beam nanofabrication, enabling effective bipolar imaging of heterogeneous anodic electrocatalytic reactions. The shape, distribution, size, and material composition of individual electrodes within the array can be precisely controlled.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.
Developing next-generation anodes with high silicon (Si) contents requires thoughtful embedment of Si particles in protective media, mainly carbonaceous materials. However, it has been challenging to simultaneously realize optimal electrical conduction, structural integrity, and low-cost synthesis for advancing Si-carbon materials. In this work, we addressed these challenges by synthesizing a composite, where commercial Si nanoparticles are embedded in a dual carbon framework via a facile solution mixing and annealing process.
View Article and Find Full Text PDFSmall
September 2025
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China.
Thick electrode is a critical strategy to increase the energy density of lithium-ion batteries(LiBs) by maximizing the active material loading. However, their practical application is obstructed by kinetic limitations, including low charge transfer efficiency and poor mechanical stability, which severely decrease rate capability, cycling performance, and safety. This review focuses on an intensive analysis of the problems with thick electrodes in terms of ion transfer kinetics, electron transfer discontinuities, and poor mechanical stability.
View Article and Find Full Text PDF