A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A discrete-time split-state framework for multi-state modeling with application to describing the course of heart disease. | LitMetric

A discrete-time split-state framework for multi-state modeling with application to describing the course of heart disease.

BMC Med Res Methodol

Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In chronic disease epidemiology, the investigation of disease etiology has largely focused on an endpoint, while the course of chronic disease is understudied, representing a knowledge gap. Multi-state models can be used to describe the course of chronic disease, such as Markov models which assume that the future state depends only on the present state, and semi-Markov models which allow transition rates to depend on the duration in the current state. However, these models are unsuitable for chronic diseases that are largely non-memoryless. We propose a Discrete-Time Split-State Framework that generates a process of substates by conditioning on past disease history and estimates discrete-time transition rates between substates as a function of duration in a (sub)state. Specifically, as the substates are created by conditioning on past history, they satisfy the Markov assumption, regardless of whether the original disease process is Markovian; and the transition rates are approximated by competing risks in a short time interval estimated from cause-specific Cox models. In the simulation study, we simulated a Markov process with an exponential distribution, a semi-Markov process with a Weibull distribution, and a non-Markov process with an exponential distribution. The coverage rate of transition rates estimated using our framework was 94% for the Markov process and 93% for the non-Markov process. However, the estimated transition rates were under coverage (72%) for the semi-Markov process, which is likely due to the approximation of transition rates in discrete time. In the application, we applied the framework to describe the course of heart disease in a large cohort study. In summary, the framework we proposed can be applied to both Markov and non-Markov processes and has potential to be applied to semi-Markov processes. For future research, as substates created using our framework track past disease history, the transition rates between substates have the potential to be used to derive summary estimates that characterize the disease course.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869649PMC
http://dx.doi.org/10.1186/s12874-025-02512-6DOI Listing

Publication Analysis

Top Keywords

transition rates
28
chronic disease
12
disease
10
discrete-time split-state
8
split-state framework
8
course heart
8
heart disease
8
course chronic
8
describe course
8
process
8

Similar Publications