Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Head and neck squamous cell carcinoma (HNSC) is a prevalent malignancy, with HPV-negative tumors exhibiting aggressive behavior and poor prognosis. Understanding the intricate interactions within the tumor microenvironment (TME) is crucial for improving prognostic models and identifying therapeutic targets. Using BulkSignalR, we identified ligand-receptor interactions in HPV-negative TCGA-HNSC cohort (n = 395). A prognostic model incorporating 14 ligand-receptor pairs was developed using random forest survival analysis and LASSO-penalized Cox regression based on overall survival and progression-free interval of HPV-negative tumors from TCGA-HNSC. Multi-omics analysis revealed distinct molecular features between risk groups, including differences in extracellular matrix remodeling, angiogenesis, immune infiltration, and APOBEC enzyme activity. Deep learning-based tissue morphology analysis on HE-stained whole slide images further improved risk stratification, with region selection via Silicon enhancing accuracy. The integration of routine histopathology with deep learning and multi-omics data offers a clinically accessible tool for precise risk stratification, facilitating personalized treatment strategies in HPV-negative HNSC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871237PMC
http://dx.doi.org/10.1038/s41698-025-00844-6DOI Listing

Publication Analysis

Top Keywords

ligand-receptor interactions
8
head neck
8
neck squamous
8
squamous cell
8
cell carcinoma
8
hpv-negative tumors
8
risk stratification
8
hpv-negative
5
interactions combined
4
combined histopathology
4

Similar Publications

Nanomaterials often need to interact with proteins on the plasma membrane to get cross and access their intracellular targets. Therefore, to fully understand the cell entry mechanism, it is of vital importance to gain a comprehensive insight into the proteome at the interface when nanomaterials encounter the cells. Here, we reported a peroxidase-based proximity labeling method to survey the proteome at the nanoparticle (NP)-cell interface.

View Article and Find Full Text PDF

Intrinsic genetic alterations and dynamic transcriptional changes contribute to the heterogeneity of solid tumors. Lung adenocarcinoma (LUAD) is characterized by its significant histological, cellular and molecular heterogeneity. The present study aimed to study the spatial transcriptomics of primary LUAD with initial hopes to decipher molecular characteristics of subtype transitions in LUAD progression, offering new insights for novel therapeutic strategies.

View Article and Find Full Text PDF

The ectoparasitic honeybee (Apis mellifera) mite Tropilaelaps mercedesae represents a serious threat to Asian apiculture and a growing concern for global beekeeping due to its high reproductive capacity and host adaptability. However, the regulatory mechanisms underlying its host adaptation across life stages remain poorly characterized. Here, we performed integrated transcriptomic, proteomic, and metabolomic analyses of female mites at 4 key postembryonic developmental stages: protonymphs, deutonymphs, mature adults, and reproductive adults.

View Article and Find Full Text PDF

Gastrodin alleviates mitochondrial energy metabolism dysfunction via activating β-catenin/c-Myc/MCT2 signaling in Alzheimer's disease models.

J Ethnopharmacol

September 2025

Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China. Electronic address:

Ethnopharmacological Relevance: Gastrodia elata, also known as Chijian, belongs to the Orchidaceae family of plants. The "Compendium of Materia Medica" records that Gastrodia elata treats "confused speech, excessive fear, and loss of willpower". Gastrodin (GAS) is the main bioactive component of Gastrodia elata.

View Article and Find Full Text PDF

Ring finger protein 180 (RNF180) is an E3 ubiquitin-protein ligase that promotes polyubiquitination and degradation. We analyzed the roles and molecular mechanisms of RNF180 during the tumorigenesis and progression of colorectal cancer (CRC) through bioinformatics analysis, in vivo and vitro experiments. RNF180 overexpression was observed in CRC, and positively associated with T, N and TNM staging or differentiation.

View Article and Find Full Text PDF