98%
921
2 minutes
20
Over the past 5 decades, artificial intelligence (AI) has evolved rapidly. Moving from basic models to advanced machine learning and deep learning systems, the impact of AI on various fields, including medicine, has been profound. In gastroenterology, AI-driven computer-aided detection and computer-aided diagnosis systems have revolutionized endoscopy, imaging, and pathology detection. The future promises further advancements in diagnostic precision, personalized treatment, and clinical research. However, challenges such as transparency, liability, and ethical concerns must be addressed. By fostering collaboration, robust governance and development of quality metrics, AI can be leveraged to enhance patient care and advance scientific knowledge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.giec.2024.09.003 | DOI Listing |
F1000Res
September 2025
Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK.
Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.
View Article and Find Full Text PDFPeriodontol 2000
September 2025
Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Oral cancer is a major global health burden, ranking sixth in prevalence, with oral squamous cell carcinoma (OSCC) being the most common type. Importantly, OSCC is often diagnosed at late stages, underscoring the need for innovative methods for early detection. The oral microbiome, an active microbial community within the oral cavity, holds promise as a biomarker for the prediction and progression of cancer.
View Article and Find Full Text PDFHum Brain Mapp
September 2025
Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).
View Article and Find Full Text PDFACS Sens
September 2025
Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.
View Article and Find Full Text PDFJ Midwifery Womens Health
September 2025
General Education Department Chair, Midwives College of Utah, Salt Lake City, Utah.
Applications driven by large language models (LLMs) are reshaping higher education by offering innovative tools that enhance learning, streamline administrative tasks, and support scholarly work. However, their integration into education institutions raises ethical concerns related to bias, misinformation, and academic integrity, necessitating thoughtful institutional responses. This article explores the evolving role of LLMs in midwifery higher education, providing historical context, key capabilities, and ethical considerations.
View Article and Find Full Text PDF