98%
921
2 minutes
20
The issue of formaldehyde pollution in indoor building materials was receiving increasing attention from scholars. With the increasing number of research cases on building materials, a systematic evaluation of the effectiveness of existing representative technologies was crucial for the future development of building materials. Adhesives and formaldehyde scavengers were common additive materials in building materials. The effects brought by the technological innovation of these two technologies were more cost-effective and feasible compared to the updating of building materials themselves. This article reviewed the research progress of adhesive and formaldehyde scavenger technologies for three types of building materials (wood-based materials, coatings, and insulation materials) since 2000, totaling 300 articles. It outlined the key technological advancements of each development stage and included a meta-analysis of 80 selected studies to evaluate the effectiveness of these technologies in reducing formaldehyde emissions. The meta-analysis results indicated that, among all studied adhesives, natural plant-based and bio-based adhesives were the most effective in reducing formaldehyde emissions, achieving an overall reduction rate of 91%-94%. For formaldehyde scavengers, nanomaterials, particularly graphene and titanium dioxide, performed the highest effectiveness in reducing formaldehyde emissions, with an overall reduction rate of 97%-98%. The issue of light supply was the main bottleneck for the technological breakthroughs. The combination of degradation materials and adsorption materials for formaldehyde scavengers was currently a research hotspot, and the combination of adhesives and scavengers was also a future research direction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2025.121242 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
With the rapid advancement in autonomous vehicles, 5G and future 6G communications, medical imaging, spacecraft, and stealth fighter jets, the frequency range of electromagnetic waves continues to expand, making electromagnetic interference (EMI) shielding a critical challenge for ensuring the safe operation of equipment. Although some existing EMI shielding materials offer lightweight construction, high strength, and effective shielding, they struggle to efficiently absorb broadband electromagnetic waves and mitigate dimensional instability and thermal stress caused by temperature fluctuations. These limitations significantly reduce their service life and restrict their practical applications.
View Article and Find Full Text PDFIn 2019, Brigham and Women's Hospital Department of Medicine (BWH-DOM) established the Health Equity Innovation Pilot (HEIP) program to fund grants led by BWH-DOM faculty members that aimed to address inequities in hospital-based care delivery or outcomes. One-year grants of up to $40,000 total were cofunded by this BWH-DOM program and by the applicant's BWH-DOM division to support health equity research or care innovation interventions. Recipients participated in a learning collaborative, which included community-building, health equity research and advocacy-related educational sessions, and midterm and final presentations.
View Article and Find Full Text PDFNano Lett
September 2025
Center for 2D Quantum Heterostructures, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.
View Article and Find Full Text PDFPLoS One
September 2025
Department of design fundamentals, Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
The slider-crank mechanism (SCM) is fundamental to various mechanical systems. However, optimizing its dynamic performance remains a pressing challenge due to excessive torque, joint reactions, and energy consumption. This study introduces two key innovations to address these challenges: (1) the integration of springs into SCM to optimize dynamic performance and (2) a novel hybrid optimization approach combining the Conjugate Direction with Orthogonal Shift (CDOS) method and Parameter Space Investigation (PSI).
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDF