98%
921
2 minutes
20
Traumatic brain injury (TBI) can have a multitude of effects on neural functioning. In extreme cases, TBI can lead to seizures both immediately following the injury as well as persistent epilepsy over years to a lifetime. However, mechanisms of neural dysfunctioning after TBI remain poorly understood. To address these questions, we analyzed human and animal data and we developed a biophysical network model implementing effects of ion concentration dynamics and homeostatic synaptic plasticity to test effects of TBI on the brain network dynamics. We focus on three primary phenomena that have been reported in vivo after TBI: an increase in infra slow oscillations (<0.1 Hz), increase in Delta power (1 - 4 Hz), and the emergence of broadband Gamma bursts (30 - 100 Hz). Using computational network model, we show that the infra slow oscillations can be directly attributed to extracellular potassium dynamics, while the increase in Delta power and occurrence of Gamma bursts are related to the increase in strength of synaptic weights from homeostatic synaptic scaling triggered by trauma. We also show that the buildup of Gamma bursts in the injured region can lead to seizure-like events that propagate across the entire network; seizures can then be initiated in previously healthy regions. This study brings greater understanding of the network effects of TBI and how they can lead to epileptic activity. This lays the foundation to begin investigating how injured networks can be healed and seizures prevented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181067 | PMC |
http://dx.doi.org/10.1007/s10827-025-00895-5 | DOI Listing |
Emerg Med Australas
October 2025
Australian Centre for Health Services Innovation, School of Public Health & Social Work, Queensland University of Technology, Brisbane, Queensland, Australia.
Reliably defining the risk of adverse in-flight events in aeromedical trauma patients could enable more informed pre-departure treatment and guide central asset allocation to achieve better system-level outcomes. Unfortunately, the current literature base specifically examining the in-flight period is sparse. Flight duration is often considered a proxy for the risk of in-flight deterioration; however, there is limited data to support this commonly held assumption.
View Article and Find Full Text PDFLab Chip
September 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.
View Article and Find Full Text PDFJ Neurotrauma
September 2025
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
Mean apparent propagator MRI (MAP-MRI) quantifies subtle alterations in tissue microstructure noninvasively and provides a more nuanced and comprehensive assessment of tissue architectural and structural integrity compared with other diffusion MRI techniques. We investigate the sensitivity of MAP-MRI-derived quantitative imaging biomarkers to detect previously unseen microstructural damage in patients with mild traumatic brain injuries (mTBI), whose clinical scans otherwise appeared normal. We developed and validated an MAP-MRI data processing pipeline for analyzing diffusion-weighted images for use in healthy controls and mTBI patients whose longitudinal scans were obtained from the GE/NFL/mTBI MRI database.
View Article and Find Full Text PDFPhotobiomodul Photomed Laser Surg
September 2025
Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA.
The current study sought to explore the impact of a novel noninvasive treatment called transcranial photobiomodulation (PBM) on resting-state functional connectivity (rsFC) of the cerebellum in individuals with a history of repetitive head acceleration events (RHAEs). RHAEs are associated with cumulative neurological compromise, including chronic alterations in rsFC; however, few treatments have been investigated to mitigate these effects. A recent study by our team demonstrated that PBM treatment led to improvements in measures of balance and motor function in adults with RHAE exposure.
View Article and Find Full Text PDFAm Surg
September 2025
Department of Trauma Surgery, Hartford Hospital, Hartford, CT, USA.
BackgroundResuscitative endovascular balloon occlusion of the aorta (REBOA) is increasingly used for hemorrhage control in trauma patients, yet its role in blunt pelvic trauma remains controversial. This study evaluates outcomes in hypotensive patients with blunt pelvic trauma undergoing hemorrhage control surgery, comparing those who received zone 3 REBOA to those who did not.MethodsA retrospective cohort analysis was conducted using the ACS Trauma Quality Programs Participant Use File (TQP-PUF) from 2016 to 2019.
View Article and Find Full Text PDF