Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: Most previous research on AI-based image diagnosis of acute cholecystitis (AC) has utilized ultrasound images. While these studies have shown promising outcomes, the results were based on still images captured by physicians, introducing inevitable selection bias. This study aims to develop a fully automated system for precise gallbladder detection among various abdominal structures, aiding clinicians in the rapid assessment of AC requiring cholecystectomy.

Methods: The dataset comprised images from 250 AC patients and 270 control participants. The VGG-16 architecture was employed for gallbladder recognition. Post-processing techniques such as the flood fill algorithm and centroid calculation were integrated into the model. U-Net was utilized for segmentation and features extraction. All models were combined to develop a fully automated AC detection system.

Results: The gallbladder identification accuracy among various abdominal organs was 95.3%, with the model effectively filtering out CT images lacking a gallbladder. In diagnosing AC, the model was tested on 120 cases, achieving an accuracy of 92.5%, sensitivity of 90.4%, and specificity of 94.1%. After integrating all components, the ensemble model achieved an overall accuracy of 86.7%. The automated process required 0.029 seconds of computation time per CT slice and 3.59 seconds per complete CT set.

Conclusions: The proposed system achieves promising performance in the automatic detection and diagnosis of gallbladder conditions in patients requiring cholecystectomy, with robust accuracy and computational efficiency. With further clinical validation, this computer-assisted system could serve as an auxiliary tool in identifying patients requiring emergency surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865635PMC
http://dx.doi.org/10.1002/ams2.70049DOI Listing

Publication Analysis

Top Keywords

develop fully
8
fully automated
8
patients requiring
8
gallbladder
6
automated
4
automated image
4
image prescription
4
prescription gallbladder
4
gallbladder deep
4
deep learning
4

Similar Publications

Background: Labor shortages in health care pose significant challenges to sustaining high-quality care for people with intellectual disabilities. Social robots show promise in supporting both people with intellectual disabilities and their health care professionals; yet, few are fully developed and embedded in productive care environments. Implementation of such technologies is inherently complex, requiring careful examination of facilitators and barriers influencing sustained use.

View Article and Find Full Text PDF

Background: Children in the United States have poor diet quality, increasing their risk for chronic disease burden later in life. Caregivers' feeding behaviors are a critical factor in shaping lifelong dietary habits. The Strong Families Start at Home/Familias Fuertes Comienzan en Casa (SFSH) was a 6-month, home-based, pilot randomized-controlled feasibility trial that aimed to improve the diet quality of 2-5-year-old children and promote positive parental feeding practices among a predominantly Hispanic/Latine sample.

View Article and Find Full Text PDF

Background: The use of probiotics as a treatment for irritable bowel syndrome (IBS) is gaining attention, with recent studies indicating that certain probiotics or combinations may have mental health benefits for patients with IBS.

Aims: To systematically review and meta-analyze, using network meta-analysis (NWM), the comparative effectiveness and safety of probiotics with psychotropic potential on quality of life, depression, and anxiety in patients with IBS.

Methods: Relevant randomized controlled trials (RCTs) were analyzed, using a Bayesian NWM, to compare the performance of probiotics with mental health benefits in IBS treatment.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF

Importance: Higher intellectual abilities have been associated with lower mortality risk in several longitudinal cohort studies. However, these studies did not fully account for early life contextual factors or test whether the beneficial associations between higher neurocognitive functioning and mortality extend to children exposed to early adversity.

Objective: To explore how the associations of child neurocognition with mortality changed according to the patterns of adversity children experienced.

View Article and Find Full Text PDF